Redis分散式鎖引發的工作事故
作者 | 浪漫先生
來源 | juejin.im/post/5f159cd8f265da22e425f71d
前言
基於Redis使用分散式鎖在當今已經不是什麼新鮮事了。本篇文章主要是基於我們實際專案中因為redis分散式鎖造成的事故分析及解決方案。
背景:我們專案中的搶購訂單採用的是分散式鎖來解決的。有一次,運營做了一個飛天茅臺的搶購活動,庫存100瓶,但是卻超賣了!要知道,這個地球上飛天茅臺的稀缺性啊!!!事故定為P0級重大事故…只能坦然接受。整個專案組被扣績效了~~事故發生後,CTO指名點姓讓我帶頭衝鋒來處理,好吧,衝~
事故現場
經過一番瞭解後,得知這個搶購活動介面以前從來沒有出現過這種情況,但是這次為什麼會超賣呢?原因在於:之前的搶購商品都不是什麼稀缺性商品,而這次活動居然是飛天茅臺,通過埋點資料分析,各項資料基本都是成倍增長,活動熱烈程度可想而知!話不多說,直接上核心程式碼,機密部分做了虛擬碼處理。。。
public SeckillActivityRequestVO seckillHandle(SeckillActivityRequestVO request) {
SeckillActivityRequestVO response;
String key = "key:" + request.getSeckillId;
try {
Boolean lockFlag = redisTemplate.opsForValue().setIfAbsent(key, "val", 10, TimeUnit.SECONDS);
if (lockFlag) {
// HTTP請求使用者服務進行使用者相關的校驗
// 使用者活動校驗
// 庫存校驗
Object stock = redisTemplate.opsForHash().get(key+":info", "stock");
assert stock != null;
if (Integer.parseInt(stock.toString()) <= 0) {
// 業務異常
} else {
redisTemplate.opsForHash().increment(key+":info", "stock", -1);
// 生成訂單
// 釋出訂單建立成功事件
// 構建響應VO
}
}
} finally {
// 釋放鎖
stringRedisTemplate.delete("key");
// 構建響應VO
}
return response;
}
以上程式碼,通過分散式鎖過期時間有效期10s來保障業務邏輯有足夠的執行時間;採用try-finally語句塊保證鎖一定會及時釋放。業務程式碼內部也對庫存進行了校驗。看起來很安全啊~ 別急,繼續分析。。。
事故原因
飛天茅臺搶購活動吸引了大量新使用者下載註冊我們的APP,其中,不乏很多羊毛黨,採用專業的手段來註冊新使用者來薅羊毛和刷單。當然我們的使用者系統提前做好了防備,接入阿里雲人機驗證、三要素認證以及自研的風控系統等各種十八般武藝,擋住了大量的非法使用者。此處不禁點個贊~
但也正因如此,讓使用者服務一直處於較高的執行負載中。
搶購活動開始的一瞬間,大量的使用者校驗請求打到了使用者服務。導致使用者服務閘道器出現了短暫的響應延遲,有些請求的響應時長超過了10s,但由於HTTP請求的響應超時我們設定的是30s,這就導致介面一直阻塞在使用者校驗那裡,10s後,分散式鎖已經失效了,此時有新的請求進來是可以拿到鎖的,也就是說鎖被覆蓋了。這些阻塞的介面執行完之後,又會執行釋放鎖的邏輯,這就把其他執行緒的鎖釋放了,導致新的請求也可以競爭到鎖~這真是一個極其惡劣的迴圈。
這個時候只能依賴庫存校驗,但是偏偏庫存校驗不是非原子性的,採用的是get and compare 的方式,超賣的悲劇就這樣發生了~~~
事故分析
仔細分析下來,可以發現,這個搶購介面在高併發場景下,是有嚴重的安全隱患的,主要集中在三個地方:
沒有其他系統風險容錯處理
由於使用者服務吃緊,閘道器響應延遲,但沒有任何應對方式,這是超賣的導火索。
看似安全的分散式鎖其實一點都不安全
雖然採用了set key value [EX seconds] [PX milliseconds] [NX|XX]的方式,但是如果執行緒A執行的時間較長沒有來得及釋放,鎖就過期了,此時執行緒B是可以獲取到鎖的。當執行緒A執行完成之後,釋放鎖,實際上就把執行緒B的鎖釋放掉了。這個時候,執行緒C又是可以獲取到鎖的,而此時如果執行緒B執行完釋放鎖實際上就是釋放的執行緒C設定的鎖。這是超賣的直接原因。
非原子性的庫存校驗
非原子性的庫存校驗導致在併發場景下,庫存校驗的結果不準確。這是超賣的根本原因。
通過以上分析,問題的根本原因在於庫存校驗嚴重依賴了分散式鎖。因為在分散式鎖正常set、del的情況下,庫存校驗是沒有問題的。但是,當分散式鎖不安全可靠的時候,庫存校驗就沒有用了。
解決方案
知道了原因之後,我們就可以對症下藥了。
實現相對安全的分散式鎖
相對安全的定義:set、del是一一對映的,不會出現把其他現成的鎖del的情況。從實際情況的角度來看,即使能做到set、del一一對映,也無法保障業務的絕對安全。因為鎖的過期時間始終是有界的,除非不設定過期時間或者把過期時間設定的很長,但這樣做也會帶來其他問題。故沒有意義。
要想實現相對安全的分散式鎖,必須依賴key的value值。在釋放鎖的時候,通過value值的唯一性來保證不會勿刪。我們基於LUA指令碼實現原子性的get and compare,如下:
public void safedUnLock(String key, String val) {
String luaScript = "local in = ARGV[1] local curr=redis.call('get', KEYS[1]) if in==curr then redis.call('del', KEYS[1]) end return 'OK'"";
RedisScript<String> redisScript = RedisScript.of(luaScript);
redisTemplate.execute(redisScript, Collections.singletonList(key), Collections.singleton(val));
}
我們通過LUA指令碼來實現安全地解鎖。
實現安全的庫存校驗
如果我們對於併發有比較深入的瞭解的話,會發現想 get and compare/ read and save 等操作,都是非原子性的。如果要實現原子性,我們也可以藉助LUA指令碼來實現。但就我們這個例子中,由於搶購活動一單隻能下1瓶,因此可以不用基於LUA指令碼實現而是基於redis本身的原子性。原因在於:
// redis會返回操作之後的結果,這個過程是原子性的
Long currStock = redisTemplate.opsForHash().increment("key", "stock", -1);
發現沒有,程式碼中的庫存校驗完全是“畫蛇添足”。
改進之後的程式碼
經過以上的分析之後,我們決定新建一個DistributedLocker類專門用於處理分散式鎖。
public SeckillActivityRequestVO seckillHandle(SeckillActivityRequestVO request) {
SeckillActivityRequestVO response;
String key = "key:" + request.getSeckillId();
String val = UUID.randomUUID().toString();
try {
Boolean lockFlag = distributedLocker.lock(key, val, 10, TimeUnit.SECONDS);
if (!lockFlag) {
// 業務異常
}
// 使用者活動校驗
// 庫存校驗,基於redis本身的原子性來保證
Long currStock = stringRedisTemplate.opsForHash().increment(key + ":info", "stock", -1);
if (currStock < 0) { // 說明庫存已經扣減完了。
// 業務異常。
log.error("[搶購下單] 無庫存");
} else {
// 生成訂單
// 釋出訂單建立成功事件
// 構建響應
}
} finally {
distributedLocker.safedUnLock(key, val);
// 構建響應
}
return response;
}
深度思考
分散式鎖有必要麼
改進之後,其實可以發現,我們藉助於redis本身的原子性扣減庫存,也是可以保證不會超賣的。對的。但是如果沒有這一層鎖的話,那麼所有請求進來都會走一遍業務邏輯,由於依賴了其他系統,此時就會造成對其他系統的壓力增大。這會增加的效能損耗和服務不穩定性,得不償失。基於分散式鎖可以在一定程度上攔截一些流量。
分散式鎖的選型
有人提出用RedLock來實現分散式鎖。RedLock的可靠性更高,但其代價是犧牲一定的效能。在本場景,這點可靠性的提升遠不如效能的提升帶來的價效比高。如果對於可靠性極高要求的場景,則可以採用RedLock來實現。
再次思考分散式鎖有必要麼
由於bug需要緊急修復上線,因此我們將其優化並在測試環境進行了壓測之後,就立馬熱部署上線了。實際證明,這個優化是成功的,效能方面略微提升了一些,並在分散式鎖失效的情況下,沒有出現超賣的情況。
然而,還有沒有優化空間呢?有的!
由於服務是叢集部署,我們可以將庫存均攤到叢集中的每個伺服器上,通過廣播通知到叢集的各個伺服器。閘道器層基於使用者ID做hash演算法來決定請求到哪一臺伺服器。這樣就可以基於應用快取來實現庫存的扣減和判斷。效能又進一步提升了!
// 通過訊息提前初始化好,藉助ConcurrentHashMap實現高效執行緒安全
private static ConcurrentHashMap<Long, Boolean> SECKILL_FLAG_MAP = new ConcurrentHashMap<>();
// 通過訊息提前設定好。由於AtomicInteger本身具備原子性,因此這裡可以直接使用HashMap
private static Map<Long, AtomicInteger> SECKILL_STOCK_MAP = new HashMap<>();
...
public SeckillActivityRequestVO seckillHandle(SeckillActivityRequestVO request) {
SeckillActivityRequestVO response;
Long seckillId = request.getSeckillId();
if(!SECKILL_FLAG_MAP.get(requestseckillId)) {
// 業務異常
}
// 使用者活動校驗
// 庫存校驗
if(SECKILL_STOCK_MAP.get(seckillId).decrementAndGet() < 0) {
SECKILL_FLAG_MAP.put(seckillId, false);
// 業務異常
}
// 生成訂單
// 釋出訂單建立成功事件
// 構建響應
return response;
}
通過以上的改造,我們就完全不需要依賴redis了。效能和安全性兩方面都能進一步得到提升!
當然,此方案沒有考慮到機器的動態擴容、縮容等複雜場景,如果還要考慮這些話,則不如直接考慮分散式鎖的解決方案。
總結
稀缺商品超賣絕對是重大事故。如果超賣數量多的話,甚至會給平臺帶來非常嚴重的經營影響和社會影響。經過本次事故,讓我意識到對於專案中的任何一行程式碼都不能掉以輕心,否則在某些場景下,這些正常工作的程式碼就會變成致命殺手!對於一個開發者而言,則設計開發方案時,一定要將方案考慮周全。怎樣才能將方案考慮周全?唯有持續不斷地學習!
作者:浪漫先生 連結:https://juejin.cn/post/6854573212831842311
來源:掘金
著作權歸作者所有。商業轉載請聯絡作者獲得授權,非商業轉載請註明出處。
相關文章
- 十九、Redis分散式鎖、Zookeeper分散式鎖Redis分散式
- Redis分散式鎖Redis分散式
- Redis 分散式鎖Redis分散式
- 分散式鎖-Redis分散式Redis
- Redis Cluster 當機引發的事故Redis
- Springboot + redis分散式鎖Spring BootRedis分散式
- Redis 分散式鎖(一)Redis分散式
- Redis分散式鎖解析Redis分散式
- redis系列:分散式鎖Redis分散式
- redis分散式鎖-可重入鎖Redis分散式
- Redis分散式鎖加鎖案例Redis分散式
- redis分散式鎖的實現Redis分散式
- 基於redis的分散式鎖Redis分散式
- 基於 Redis 的分散式鎖Redis分散式
- 基於 Redis 分散式鎖Redis分散式
- 分散式鎖----Redis實現分散式Redis
- 細說Redis分散式鎖?Redis分散式
- Redis分散式鎖實戰Redis分散式
- Redis 應用-分散式鎖Redis分散式
- 詳解Redis分散式鎖Redis分散式
- Redis實現分散式鎖Redis分散式
- 【180414】分散式鎖(redis/mysql)分散式RedisMySql
- 【Redis】利用 Redis 實現分散式鎖Redis分散式
- 關於分散式鎖原理的一些學習與思考-redis分散式鎖,zookeeper分散式鎖分散式Redis
- 基於redis做分散式鎖Redis分散式
- Redis-10-分散式鎖.mdRedis分散式
- redis分散式鎖-java實現Redis分散式Java
- Redis之分散式鎖實現Redis分散式
- Redis如何實現分散式鎖Redis分散式
- 分散式鎖之Redis實現分散式Redis
- 利用Redis實現分散式鎖Redis分散式
- 分散式鎖--Redis小試牛刀分散式Redis
- Redis 分散式鎖解決方案Redis分散式
- redis分散式鎖-SETNX實現Redis分散式
- 分散式鎖實現(一):Redis分散式Redis
- Redis分散式鎖解決方案Redis分散式
- Redis實現可重入的分散式鎖Redis分散式
- redis分散式鎖的問題和解決Redis分散式