Python計算機視覺-第2章
本章旨在尋找影像間的對應點和對應區域。本章將介紹用於影像匹配的兩種區域性描 述子演算法。本書的很多內容中都會用到這些區域性特徵,它們在很多應用中都有重要 作用,比如建立全景圖、擴增實境技術以及計算影像的三維重建。
1、Harris角點檢測器
Harris 角點檢測演算法(也稱 Harris & Stephens 角點檢測器)是一個極為簡單的角點 檢測演算法。該演算法的主要思想是,如果畫素周圍顯示存在多於一個方向的邊,我們 認為該點為興趣點。該點就稱為角點。我們把影像域中點 x 上的對稱半正定矩陣定義為:
選擇權重矩陣 W(通常為高斯濾波器 Gσ),我們可以得到卷積:
Harris 矩陣的特徵值有三種情況:
-
如果 λ1 和 λ2 都是很大的正數,則該 x 點為角點;
-
如果 λ1 很大,λ2 ≈ 0,則該區域記憶體在一個邊,該區域內的平均的特徵值不
會變化太大;
-
如果 λ1≈ λ2 ≈ 0,該區域內為空。
在不需要實際計算特徵值的情況下,為了把重要的情況和其他情況分開,Harris 和 Stephens 引入了指示函式:
為了去除加權常數 κ,我們通常使用商數:
作為指示器。
下面我們寫出 Harris 角點檢測程式。程式碼實現:
# -*- coding: utf-8 -*-
from pylab import *
from PIL import Image
# from PCV.localdescriptors import harris
import harris
"""
Example of detecting Harris corner points (Figure 2-1 in the book).
"""
# 讀入影像
im = array(Image.open('../data/empire.jpg').convert('L'))
# 檢測harris角點
harrisim = harris.compute_harris_response(im)
# Harris響應函式
harrisim1 = 255 - harrisim
figure()
gray()
#畫出Harris響應圖
subplot(141)
imshow(harrisim1)
print(harrisim1.shape)
axis('off')
axis('equal')
threshold = [0.01, 0.05, 0.1]
for i, thres in enumerate(threshold):
filtered_coords = harris.get_harris_points(harrisim, 6, thres)
subplot(1, 4, i+2)
imshow(im)
print(im.shape)
plot([p[1] for p in filtered_coords], [p[0] for p in filtered_coords], '*')
axis('off')
#原書採用的PCV中PCV harris模組
# filtered_coords = harris.get_harris_points(harrisim,6)
# harris.plot_harris_points(im, filtered_coords)
# plot only 200 strongest
# harris.plot_harris_points(im, filtered_coords[:200])
show()
其中compute_harris_response函式、 get_harris_points函式和 plot_harris_points函式程式碼實現詳見harris.py檔案。
執行結果:
在影像間尋找對應點,程式碼實現:
# -*- coding: utf-8 -*-
from pylab import *
from PIL import Image
# from PCV.localdescriptors import harris
# from PCV.tools.imtools import imresize
import harris
from imtools import imresize
"""
This is the Harris point matching example in Figure 2-2.
"""
# Figure 2-2上面的圖
#im1 = array(Image.open("../data/crans_1_small.jpg").convert("L"))
#im2 = array(Image.open("../data/crans_2_small.jpg").convert("L"))
# Figure 2-2下面的圖
im1 = array(Image.open("../data/sf_view1.jpg").convert("L"))
im2 = array(Image.open("../data/sf_view2.jpg").convert("L"))
# resize to make matching faster
im1 = imresize(im1, (im1.shape[1]//2, im1.shape[0]//2))
im2 = imresize(im2, (im2.shape[1]//2, im2.shape[0]//2))
wid = 5
harrisim = harris.compute_harris_response(im1, 5)
filtered_coords1 = harris.get_harris_points(harrisim, wid+1)
d1 = harris.get_descriptors(im1, filtered_coords1, wid)
harrisim = harris.compute_harris_response(im2, 5)
filtered_coords2 = harris.get_harris_points(harrisim, wid+1)
d2 = harris.get_descriptors(im2, filtered_coords2, wid)
print('starting matching')
matches = harris.match_twosided(d1, d2)
figure()
gray()
harris.plot_matches(im1, im2, filtered_coords1, filtered_coords2, matches)
show()
執行結果:
2、SIFT(尺度不變特徵變換)
David Lowe 在文獻 [17] 中提出的 SIFT(Scale-Invariant Feature Transform,尺度不 變特徵變換)是過去十年中最成功的影像區域性描述子之一。SIFT 特徵後來在文獻 [18] 中得到精煉並詳述,經受住了時間的考驗。SIFT 特徵包括興趣點檢測器和描述 子。SIFT 描述子具有非常強的穩健性,這在很大程度上也是 SIFT 特徵能夠成功和 流行的主要原因。自從 SIFT 特徵的出現,許多其他本質上使用相同描述子的方法 也相繼出現。現在,SIFT 描述符經常和許多不同的興趣點檢測器相結合使用(有些 情況下是區域檢測器),有時甚至在整幅影像上密集地使用。SIFT 特徵對於尺度、 旋轉和亮度都具有不變性,因此,它可以用於三維視角和噪聲的可靠匹配。你可以在 http://en.wikipedia.org/wiki/Scale-invariant_feature_transform 獲得 SIFT 特徵的簡 要介紹。
(1)興趣點
SIFT 特徵使用高斯差分函式來定位興趣點:
其中,Gσ 是上一章中介紹的二維高斯核,Iσ 是使用 Gσ 模糊的灰度影像,κ 是決定相 差尺度的常數。
(2)描述子
為了實現旋轉不變性,基於每個點周圍影像梯度的方向和大小,SIFT 描述子又引入了參考方向。SIFT 描述子使用主方向描述參考方向。主方向使用方向直方圖(以大小為權 重)來度量。
構造 SIFT 描述子特徵向量的圖解:(a)一個圍繞興趣點的網格結構,其中該網格已 經按照梯度主方向進行了旋轉;(b)在網格的一個子區域內構造梯度方向的 8-bin 直方圖;(c) 在網格的每個子區域內提取直方圖;(d)拼接直方圖,得到一個長的特徵向量。
(3)檢測興趣點
程式碼實現:
# -*- coding: utf-8 -*-
from PIL import Image
from pylab import *
# from PCV.localdescriptors import sift
# from PCV.localdescriptors import harris
import sift
import harris
# 新增中文字型支援
# from matplotlib.font_manager import FontProperties
# font = FontProperties(fname=r"c:\windows\fonts\SimSun.ttc", size=14)
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/System/Library/Fonts/PingFang.ttc", size=14)
imname = '../data/empire.jpg'
im = array(Image.open(imname).convert('L'))
sift.process_image(imname, 'empire.sift')
l1, d1 = sift.read_features_from_file('empire.sift')
figure()
gray()
subplot(131)
sift.plot_features(im, l1, circle=False)
title(u'SIFT特徵',fontproperties=font)
subplot(132)
sift.plot_features(im, l1, circle=True)
title(u'用圓圈表示SIFT特徵尺度',fontproperties=font)
# 檢測harris角點
harrisim = harris.compute_harris_response(im)
subplot(133)
filtered_coords = harris.get_harris_points(harrisim, 6, 0.1)
imshow(im)
plot([p[1] for p in filtered_coords], [p[0] for p in filtered_coords], '*')
axis('off')
title(u'Harris角點',fontproperties=font)
show()
執行結果:
(4)匹配描述子
程式碼實現:
from PIL import Image
from pylab import *
import sys
# from PCV.localdescriptors import sift
import sift
if len(sys.argv) >= 3:
im1f, im2f = sys.argv[1], sys.argv[2]
else:
# im1f = '../data/sf_view1.jpg'
# im2f = '../data/sf_view2.jpg'
# im1f = '../data/crans_1_small.jpg'
# im2f = '../data/crans_2_small.jpg'
im1f = '../data/climbing_1_small.jpg'
im2f = '../data/climbing_2_small.jpg'
im1 = array(Image.open(im1f))
im2 = array(Image.open(im2f))
#sift.process_image(im1f, 'out_sift_1.txt')
l1, d1 = sift.read_features_from_file('out_sift_1.txt')
figure()
gray()
subplot(121)
sift.plot_features(im1, l1, circle=False)
#sift.process_image(im2f, 'out_sift_2.txt')
l2, d2 = sift.read_features_from_file('out_sift_2.txt')
subplot(122)
sift.plot_features(im2, l2, circle=False)
#matches = sift.match(d1, d2)
matches = sift.match_twosided(d1, d2)
print('{} matches'.format(len(matches.nonzero()[0])))
figure()
gray()
sift.plot_matches(im1, im2, l1, l2, matches, show_below=True)
show()
執行結果:
3、匹配地理標記影像
(1)從Panoramio下載地理標記影像
2016年Google已經關閉Panoramio(http://www.panoramio.com/)網站,所以只能從Programming Computer Vision with Python書中程式碼對應中文主頁Python計算機視覺程式設計,去下載相應的部分圖片了。
(2)使用區域性描述子匹配
程式碼實現:
import sift
import imtools
from pylab import *
#獲取影像列表
imlist = imtools.get_imlist('../data/panoimages/')
nbr_images = len(imlist)
print("imlist\n")
print(imlist)
nbr_images = len(imlist)
print(nbr_images)
# extract features
featlist = [imname[:-3] + 'sift' for imname in imlist]
print("featlist\n")
print(featlist)
matchscores = zeros((nbr_images,nbr_images))
for i in range(nbr_images):
for j in range(i,nbr_images): # 僅僅計算上三角
print('comparing ', imlist[i], imlist[j])
# process and save features to file
sift.process_image(imlist[i],featlist[i])
l1,d1 = sift.read_features_from_file(featlist[i])
sift.process_image(imlist[j],featlist[j])
l2,d2 = sift.read_features_from_file(featlist[j])
matches = sift.match_twosided(d1,d2)
nbr_matches = sum(matches > 0)
print('number of matches = ', nbr_matches)
matchscores[i,j] = nbr_matches
# 複製值
for i in range(nbr_images):
for j in range(i+1,nbr_images): # 不需要複製對角線
matchscores[j,i] = matchscores[i,j]
print("matchscores:\n",matchscores)
執行結果:
matchscores:
[[7.060e+02 3.800e+01 0.000e+00 0.000e+00 1.300e+01 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 5.000e+00
0.000e+00 0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00]
[3.800e+01 5.950e+02 0.000e+00 0.000e+00 2.000e+00 0.000e+00 1.000e+00
0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 3.000e+00
1.000e+00 0.000e+00 2.000e+00 0.000e+00 0.000e+00 0.000e+00]
[0.000e+00 0.000e+00 8.510e+02 0.000e+00 0.000e+00 0.000e+00 1.000e+00
4.000e+00 0.000e+00 0.000e+00 1.000e+00 1.000e+00 0.000e+00 0.000e+00
1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.600e+01]
[0.000e+00 0.000e+00 0.000e+00 1.685e+03 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00]
[1.300e+01 2.000e+00 0.000e+00 0.000e+00 4.160e+02 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00]
[0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.032e+03 0.000e+00
0.000e+00 2.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00]
[0.000e+00 1.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00 8.100e+02
1.000e+00 0.000e+00 0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00]
[0.000e+00 0.000e+00 4.000e+00 0.000e+00 0.000e+00 0.000e+00 1.000e+00
5.490e+02 0.000e+00 0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00
3.000e+00 9.000e+00 0.000e+00 0.000e+00 1.000e+00 6.000e+00]
[0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00 2.000e+00 0.000e+00
0.000e+00 5.220e+02 0.000e+00 2.000e+00 1.000e+00 0.000e+00 0.000e+00
0.000e+00 2.000e+00 0.000e+00 1.000e+00 0.000e+00 0.000e+00]
[0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 1.849e+03 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00]
[0.000e+00 0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00 1.000e+00
1.000e+00 2.000e+00 0.000e+00 1.154e+03 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 1.000e+00 0.000e+00 0.000e+00 3.000e+00]
[0.000e+00 0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 1.000e+00 0.000e+00 0.000e+00 1.190e+02 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00]
[0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 2.716e+03 0.000e+00
0.000e+00 0.000e+00 1.300e+01 0.000e+00 0.000e+00 0.000e+00]
[5.000e+00 3.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 6.680e+02
0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00]
[0.000e+00 1.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
3.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
1.464e+03 0.000e+00 0.000e+00 1.000e+00 0.000e+00 2.000e+00]
[0.000e+00 0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
9.000e+00 2.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 5.570e+02 2.000e+00 7.000e+00 0.000e+00 1.700e+01]
[1.000e+00 2.000e+00 1.000e+00 0.000e+00 0.000e+00 1.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00 1.000e+00 0.000e+00 1.300e+01 0.000e+00
0.000e+00 2.000e+00 1.391e+03 0.000e+00 1.000e+00 1.000e+00]
[0.000e+00 0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
1.000e+00 7.000e+00 0.000e+00 5.400e+02 0.000e+00 3.000e+00]
[0.000e+00 0.000e+00 1.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
1.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 1.000e+00 0.000e+00 1.664e+03 1.000e+00]
[0.000e+00 0.000e+00 1.600e+01 0.000e+00 0.000e+00 0.000e+00 0.000e+00
6.000e+00 0.000e+00 0.000e+00 3.000e+00 0.000e+00 0.000e+00 0.000e+00
2.000e+00 1.700e+01 1.000e+00 3.000e+00 1.000e+00 8.800e+02]]
[Finished in 285.9s]
(3)視覺化連線的影像
pydot例子程式碼實現:
import pydot
g = pydot.Dot(graph_type='graph')
g.add_node(pydot.Node(str(0), fontcolor='transparent'))
for i in range(5):
g.add_node(pydot.Node(str(i + 1)))
g.add_edge(pydot.Edge(str(0), str(i + 1)))
for j in range(5):
g.add_node(pydot.Node(str(j + 1) + '_' + str(i + 1)))
g.add_edge(pydot.Edge(str(j + 1) + '_' + str(i + 1), str(j + 1)))
# g.write_png('../images/ch02/ch02_fig2-9_graph.png', prog='neato')
# 原始碼中write_png函式已經改成write函式,預設生產圖片format=raw所要重新設定圖片格式format,不然普通圖片工具打不開
g.write('graph.jpg', prog='neato', format='png', encoding=None)
from PIL import Image
from pylab import *
# 新增中文字型支援
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/System/Library/Fonts/PingFang.ttc", size=14)
figure()
im = array(Image.open('graph.jpg'))
imshow(im)
title(u'Pydot Sample', fontproperties=font)
axis('off')
show()
pydot例子執行結果:
白宮圖片匹配程式碼實現:
# -*- coding: utf-8 -*-
from pylab import *
from PIL import Image
# from PCV.localdescriptors import sift
# from PCV.tools import imtools
import sift
import imtools
import pydot
import os
""" This is the example graph illustration of matching images from Figure 2-10.
To download the images, see ch2_download_panoramio.py."""
parent_path = os.path.abspath(os.path.join(os.path.dirname("__file__"),os.path.pardir))
download_path = parent_path+'/data/panoimages/' # set this to the path where you downloaded the panoramio images
path = parent_path+'/ch02/' # path to save thumbnails (pydot needs the full system path)
# list of downloaded filenames
imlist = imtools.get_imlist(download_path)
nbr_images = len(imlist)
# extract features
featlist = [imname[:-3] + 'sift' for imname in imlist]
matchscores = zeros((nbr_images,nbr_images))
for i in range(nbr_images):
for j in range(i, nbr_images): # only compute upper triangle
# print('comparing ', imlist[i],imlist[j])
# process and save features to file
sift.process_image(imlist[i],featlist[i])
l1, d1 = sift.read_features_from_file(featlist[i])
sift.process_image(imlist[j],featlist[j])
l2, d2 = sift.read_features_from_file(featlist[j])
matches = sift.match_twosided(d1, d2)
nbr_matches = sum(matches > 0)
# print('number of matches = ', nbr_matches)
matchscores[i, j] = nbr_matches
# copy values
for i in range(nbr_images):
for j in range(i + 1, nbr_images): # no need to copy diagonal
matchscores[j, i] = matchscores[i, j]
print("The match scores is: %d",matchscores)
#savetxt(("../data/panoimages/panoramio_matches.txt",matchscores)
threshold = 2 # min number of matches needed to create link
g = pydot.Dot(graph_type='graph') # don't want the default directed graph
for i in range(nbr_images):
for j in range(i + 1, nbr_images):
if matchscores[i, j] > threshold:
# first image in pair
im = Image.open(imlist[i])
im.thumbnail((100, 100))
filename = str(i) + '.png'
im.save(filename) # need temporary files of the right size
g.add_node(pydot.Node(str(i), fontcolor='transparent', \
shape='rectangle', image=path+filename))
# second image in pair
im = Image.open(imlist[j])
im.thumbnail((100, 100))
filename = str(j) + '.png'
im.save(filename) # need temporary files of the right size
g.add_node(pydot.Node(str(j), fontcolor='transparent', \
shape='rectangle', image=path+filename))
g.add_edge(pydot.Edge(str(i), str(j)))
# g.write_png('whitehouse.png')
g.write('whitehouse.png',format='png')
from PIL import Image
from pylab import *
# 新增中文字型支援
from matplotlib.font_manager import FontProperties
font = FontProperties(fname="/System/Library/Fonts/PingFang.ttc", size=14)
figure()
im = array(Image.open('whitehouse.png'))
imshow(im)
title(u'MatchGraph', fontproperties=font)
axis('off')
show()
白宮圖片匹配執行結果:
vlfeat最新版vlfeat-0.9.21有問題(老是報錯記憶體不夠分配),回退到vlfeat-0.9.20即可,特此說明。
相關文章
- Python 計算機視覺(十五)—— 影像特效處理Python計算機視覺特效
- Python計算機視覺——Harris角點檢測Python計算機視覺
- iOS計算機視覺—ARKitiOS計算機視覺
- 計算機視覺論文集計算機視覺
- 計算機視覺—影象特效(3)計算機視覺特效
- 計算機視覺環境配置計算機視覺
- OpenVINO計算機視覺模型加速計算機視覺模型
- 【計算機視覺】視訊格式介紹計算機視覺
- 計算機視覺頂會引用格式計算機視覺
- 計算機視覺方向乾貨文章計算機視覺
- 人工智慧 (14) 計算機視覺人工智慧計算機視覺
- iOS計算機視覺—人臉識別iOS計算機視覺
- 計算機視覺基本原理——RANSAC計算機視覺
- Pytorch計算機視覺實戰(更新中)PyTorch計算機視覺
- 計算機視覺方向文章清單20191105計算機視覺
- 計算機視覺技術專利分析計算機視覺
- 計算機視覺與深度學習公司計算機視覺深度學習
- 計算機視覺中的深度學習計算機視覺深度學習
- 計算機視覺崗實習面經計算機視覺
- 計算機視覺中的注意力機制計算機視覺
- 機器學習工作坊 - 計算機視覺機器學習計算機視覺
- 計算機影象與視覺入門必備計算機視覺
- 計算機視覺經典任務分類計算機視覺
- 計算機視覺相關乾貨文章-20190807計算機視覺
- 史丹佛—深度學習和計算機視覺深度學習計算機視覺
- Hugging Face 中計算機視覺的現狀Hugging Face計算機視覺
- 計算機視覺入門系列(一) 綜述計算機視覺
- 【計算機視覺】利用GAN Prior來處理各種視覺任務計算機視覺
- CV:計算機視覺基礎之影像儲存到計算機的原理daiding計算機視覺AI
- [AI開發]Python+Tensorflow打造自己的計算機視覺API服務AIPython計算機視覺API
- 計算機視覺—圖片幾何變換(2)計算機視覺
- 從智慧化“天眼”看計算機視覺未來計算機視覺
- 計算機視覺 の1. 影像預處理計算機視覺
- 乾貨|如何利用CNN建立計算機視覺模型?CNN計算機視覺模型
- 計算機視覺--CV技術指南文章彙總計算機視覺
- 計算機視覺 | Matlab實現單目視覺里程計基於SURF特徵(程式碼類)計算機視覺Matlab特徵
- [雪峰磁針石部落格]python計算機視覺深度學習1簡介Python計算機視覺深度學習
- 【Python教程】計算機視覺的基石——讀懂 CNN卷積神經網路Python計算機視覺CNN卷積神經網路