本文完整程式碼已上傳至我的
Github
倉庫https://github.com/CNFeffery/FefferyViz
1 簡介
交通是產生溫室氣體排放的主要來源之一,而本期作為(在模仿中精進資料視覺化)系列的第二期,將帶大家以純Python
的方式對加拿大米西索加城市溫室氣體排放研究報告中的如圖1所示的視覺化作品進行復刻,它對溫室氣體排放來源中,交通方面的各排放源排放比例進行視覺化:
2.1 觀察原作品
其實原作品整體構圖上比較直觀,主要由兩部分組成:
- 1 左側柱狀圖部分
左側的柱狀圖無需多言,就是一個簡單的堆疊柱狀圖,利用matplotlib
構建起來非常方便。
- 2 右側類桑基圖部分
到了右側,也是這張圖中最有設計感的部分,它用類似桑基圖的方式,將左圖中交通下屬的分類溫室氣體排放比例構成進行視覺化,這也是本文的重點部分,我們可以利用matplotlib
加上一點點簡單的數學知識來複刻它。
2.2 開始動手!
在洞悉了原作品的主要視覺元素之後,接下來我們開始動手復刻它。
2.2.1 左側柱狀圖部分
對於左側的堆疊柱狀圖,其本質其實是兩個堆疊起來的矩形,因此我們可以使用matplotlib.patches
下的Rectangle
來建立矩形。
其使用方法非常簡單,只需要指定矩形左下角座標,再填寫矩形對應的寬與高即可自由建立矩形:
我們參考原作品的背景色,以及左側矩形對應y軸的真實數值,先把左側的堆疊柱狀圖和圖床背景色做好:
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
# 建立圖床
fig, ax = plt.subplots(figsize=(11, 6))
# 建立buildings對應矩形
ax.add_patch(Rectangle((0, 0), 3e6, 3e6, facecolor='#f38530'))
# 建立transportation對應矩形
ax.add_patch(Rectangle((0, 3e6), 3e6, 2.1e6, facecolor='#4abad0'))
# 設定x軸範圍
ax.set_xlim(-3e6, 1.7e7)
# 設定y軸範圍
ax.set_ylim(-4e6, 9e6)
# 設定背景色
fig.patch.set_facecolor('#efefea')
ax.set_facecolor('#efefea')
# 關閉座標軸
ax.axis('off');
接著我們在上面程式碼的基礎上新增下列程式碼,順便把原作品中連線左右側的3條灰色線條新增上去:
# 新增連線線
ax.plot([3e6, 6e6], [3e6, 3e6-1.5e6], color='grey', linewidth=0.75)
ax.plot([3e6, 6e6], [5.1e6, 5.1e6+1.5e6], color='grey', linewidth=0.75)
ax.plot([6e6, 6e6], [3e6-1.5e6, 5.1e6+1.5e6], color='lightgrey', linewidth=1.5)
這樣,我們就把最簡單的左半邊主要視覺元素組織好了。
2.2.2 右側類桑基圖部分
到了本文的核心內容——構造右側類桑基圖部分,為了便於之後的幾何元素製作,我們先把原作品中右側涉及的資料構造到資料框中:
import pandas as pd
data = pd.DataFrame({
'型別': ['Car', 'Freight', 'Street Lights', 'GO Train', 'BRT', 'Bus', 'Taxi', 'Motorcycle'],
'份額': [0.8628, 0.0933, 0.0005, 0.001, 0.0121, 0.0133, 0.0165, 0.0005]
})
data['份額累加'] = data['份額'].cumsum()
data.head()
其中份額累加
列的新增是為了方便之後組合幾何元素。
首先我們來繪製右側最上方的Car對應的矩形,因為這部分只是簡單的矩形,在上一步的繪圖程式碼中新增下列程式碼來更新影像:
height = 5.1e6 + 1.5e6 - (3e6 - 1.5e6)
# 右側圖形
# 最上方矩形
ax.add_patch(Rectangle((6e6, 3e6-1.5e6+0.1372*height),
0.8e7,
0.8628*height,
facecolor='#4ebcd1'))
接下來我們來建立類桑基圖部分,思路其實很簡單,因為這部分內容與Sigmoid型函式對應的曲線是很接近的,譬如正弦函式在\(0.5\pi\)到\(1.5\pi\)之間的曲線:
根據這個特點,我們可以結合第1期中玩過的老把戲——線性變換,來輔助生成桑基條帶。
我們從最上方矩形的下端開始,利用data
中的份額
與份額累加
,以及\(0.5\pi\)到\(1.5\pi\)之間的標準正弦函式曲線,配合線性變換,來構造每個類別對應條帶的上下邊界,再配合matplotlib
中的fill_between
來完成條帶的繪製。
首先我們來生成基礎正弦函式取樣點資料,以及線性變換函式:
x, y = np.arange(0.5*np.pi, 1.5*np.pi, 0.001), np.sin(np.arange(0.5*np.pi, 1.5*np.pi, 0.001))
def scale(xlim, ylim):
return (xlim[0] + (xlim[1] - xlim[0]) * (x - x.min()) / (x.max() - x.min()),
ylim[0] + (ylim[1] - ylim[0]) * (y - y.min()) / (y.max() - y.min()))
這樣我們就可以在給定x範圍,以及給定y範圍的基礎上,將標準的正弦函式曲線不同程度的“壓扁”,就像下面的例子一樣:
import numpy as np
x, y = np.arange(0.5*np.pi, 1.5*np.pi, 0.001), np.sin(np.arange(0.5*np.pi, 1.5*np.pi, 0.001))
def scale(xlim, ylim):
return (xlim[0] + (xlim[1] - xlim[0]) * (x - x.min()) / (x.max() - x.min()),
ylim[0] + (ylim[1] - ylim[0]) * (y - y.min()) / (y.max() - y.min()))
plt.plot(*scale((0, 1), (0, 1)))
plt.plot(*scale((0, 1), (0.25, 1)))
plt.plot(*scale((0, 1), (0.5, 1)))
plt.plot(*scale((0, 1), (0.75, 1)));
按照這個思想,我們結合份額
與份額累加
值,以兩種色彩交錯的方式構造條帶:
# 生成每個條帶的上下底
bands = [(scale(xlim=(6e6, 6e6+0.8e7),
ylim=(5.1e6+1.5e6-data.at[i, '份額累加']*height-(i+1)*7e8,
5.1e6+1.5e6-data.at[i, '份額累加']*height)),
scale(xlim=(6e6, 6e6+0.8e7),
ylim=(5.1e6+1.5e6-data.at[i, '份額累加']*height-data.at[i+1, '份額']*height-(i+1)*7e8,
5.1e6+1.5e6-data.at[i, '份額累加']*height-data.at[i+1, '份額']*height)))
for i in range(data.shape[0]-1)]
colors = ['#1b7d98', '#a5dce7']
for i, band in enumerate(bands):
if i % 2 == 0:
ax.fill_between(band[0][0], band[0][1], band[1][1], color='#1b7d98')
else:
ax.fill_between(band[0][0], band[0][1], band[1][1], color='#a5dce7')
這樣子,我們就完成了原作品的主要視覺元素的復刻。
2.2.3 其他元素的補充
接下來的內容就比較簡單,我們只需要把各種文字標註、分割線、刻度等小細節補上即可:
# 其它元素的補充
# y軸數值標籤
for y_, text in zip([0, 2e6, 4e6, 6e6], ['0', '2M', '4M', '6M']):
ax.text(-1e6, y_, text, ha='right', color='grey', fontsize=8)
# 新增左側矩形內部標註
ax.text(1.5e6, 1.5e6, 'Buildings 3M', color='white',
ha='center', fontsize=7, fontweight='bold')
ax.text(1.5e6, 3e6+1.05e6, 'Transportation 2.1M',
color='white', ha='center', fontsize=7, fontweight='heavy')
# 新增黑色Today標註
ax.text(1.5e6, -5e5, 'Today',
color='black', ha='center',
fontsize=10, family='Times New Roman')
# 新增右側文字標註
ax.text(1.42e7, 4.5e6, 'Car 86.28%', fontsize=8, family='Times New Roman')
for i in range(data.shape[0]-1):
ax.text(1.42e7, 5.1e6+1.5e6-data.at[i, '份額累加']*height-data.at[i+1, '份額']*0.5*height-(i+1)*7e5,
'{} {}%'.format(data.at[i+1, '型別'], round(data.at[i+1, '份額']*100, 2)),
va='center', fontsize=8, family='Times New Roman')
# 新增y軸標題
ax.text(-2.2e6, 3.3e6, 'Annual Metric Tons of $CO_{2}$eq Emissions',
rotation=90, va='center', fontsize=7.8)
# 上部分隔線
ax.plot([-2.3e6, 1.65e7], [9e6, 9e6], color='#327997', linewidth=0.7)
# 上部黑色說明文字
ax.text(-2.3e6,
7.9e6,
"40% of Mississauga's GHG emissions come from the transportation sector including freight. Less than 3% of these emissions currently come from \npublic transit.",
fontsize=7.9,
style='italic')
# 上部標題
ax.text(-2.3e6, 9.2e6, 'GHG Emissions - Transportation',
color='#327997', fontweight='heavy')
經過這一番操作,最終的結果如圖10所示:
而原作品中右側並沒有按照比例的降序排列,如果你想降序排列,只需要在建立data
之後對資料框按照份額
降序並重置index
即可~,降序排列後再繪製的效果如圖11所示:
是不是舒服自然了很多了呢~
以上就是本文的全部內容,歡迎在評論區與我進行討論~