使用Echarts來實現資料視覺化

jeanron100發表於2018-03-28

自動化運維中,指令碼化,工具化,平臺化的過程中,有一個環節不可缺少,那就是視覺化。

視覺化這方面的開源產品還是相當的多,總體的方向都是藉助於豐富的前端方案來聯動,如今很大的特點是不光讓資料顯示出來,還讓資料動起來。

Echarts這個方案從我接觸到做出一個還算不錯的圖,也就不過幾個小時的時間,其中至少60%的時間是花在資料的提取和巢狀環節。

Echarts的口碑很不錯,聽到一箇中肯但是有比較損的話:Echarts是百度推出的最有良心的產品。總之Echarts的視覺化效果做得很不錯,能讓資料視覺化很快接入,立馬高大上起來。

使用Echarts來實現資料視覺化

如果看Echarts的官網會發現現在是區分了2個版本,新的版本是2.0的,有了較大的變化。效果做了更多的處理。

假設每天存在著大量的備份任務,每天備份了多少,產生了多大備份集,備份花了多少時間,在這個基礎上我又提了一個並行備份的概念,比如40個資料庫從1:00開始備份,不管中間是如何排程的,如果是在5:00結束,那麼就算並行備份時間是4個小時,而如果序列來算,可能備份的時間有10個小時,類似這樣的道理。

如果有了這些資料和參考,那麼我們做最佳化的時候方向就會更加明確。是接入更多的業務,減少備份的儲存容量,還是降低並行備份的時長。有了資料,有了概覽,這些都會了然於胸。

如何顯示呢,我們在html中需要一個div來襯托。比如下面的div,我們可以根據id來在JS中繫結Echarts的程式碼。

<div class="panel-body">

<div id="morris-area-chart" style="width:100%;height:400px"></div>

</div>

如何和div關聯起來,我們透過JS裡面的document物件來定位。然後使用echarts的物件在這個基礎上初始化,我們可以偽造一些資料。

< type="text/java">

var myChart = echarts.init(document.getElementById('morris-area-chart'));

//alert(myChart)

var xAxisData = ['18-01-10','18-01-11','18-01-12','18-01-13','18-01-14','18-01-15','18-01-16'];

var data1 = [4030, 4020, 3600, 3750, 3900, 3740, 3760];

var data2 = [795,804,648,658,656,661,665];

option = {

title: {

text: '近期備份資料量統計'

},

legend: {

data: ['日備份容量', '備份集個數'],

align: 'left'

},

toolbox: {

// y: 'bottom',

feature: {

magicType: {

type: ['stack', 'tiled']

},

dataView: {},

saveAsImage: {

pixelRatio: 2

}

}

},

tooltip: {},

xAxis: {

data: xAxisData,

silent: false,

splitLine: {

show: false

}

},

yAxis: {

},

series: [{

name: '日備份容量',

type: 'bar',

data: data1,

animationDelay: function (idx) {

return idx * 10;

}

}, {

name: '備份集個數',

type: 'bar',

data: data2,

animationDelay: function (idx) {

return idx * 10 + 100;

}

}],

animationEasing: 'elasticOut',

animationDelayUpdate: function (idx) {

return idx * 5;

}

};

myChart.setOption(option);

</s>

整體來看這個過程還好啊,也沒多少程式碼,那是因為Echarts都幫我們做好了。我們來看看後端和前端是如何銜接的,也是做Echarts出圖的難點吧。

從後端來說,我們透過Django API或者raw SQL來得到資料結果。

如果透過raw SQL方式來定製,則類似下面的步驟。

cursor.execute(" xxxxxx")

backup_size_all = dictfetchall(cursor)

cursor.close()

其中cursor處理的結果預設是truple的,我們需要轉換為字典,處理起來會更加方便,所以用了dictfecthall的方法。

def dictfetchall(cursor):

desc = cursor.deion

return [

dict(zip([col[0] for col in desc], row))

for row in cursor.fetchall()

]

然後讓response物件來返回到頁面即可。

前端怎麼去處理這個資料呢。這裡面有個難點就是對於資料的方式。

比如查詢結果有兩列,比如為backup_date,backup_size,簡單模擬一些資料。

backup_date backup_size

18-01-15 200

18-01-16 300

18-01-17 350

查詢出來的結果轉換成字典之後,就是類似這樣的形式:

(backup_date:18-01-15,backup_size:200),(backup_date:18-01-16,backup_size:300),(backup_date:18-01-17,backup_size:350)

如果在前端初始化的時候,結果就類似:

18-01-15,200,18-01-16,300,18-01-17,350這樣的方式,簡單來說就是資料是在一起的,在一個迴圈中統一處理的。怎麼區別開來呢,在這個場景中,我們可以按照2位基數做奇偶校驗。

但是問題來了,前端的標籤不支援看起來簡單的邏輯校驗和檢查。怎麼在前端做奇偶校驗呢。

有一個特殊的標籤,forloop.counter|divisibleby:2,明白了這點之後,我們就可以選擇性的初始化,按照我們的預期來把資料放到不同的地方。所以Echarts中需要的幾個陣列都可以透過這種方式來初始化。

var xAxisData=[

{% for ds in backup_pieces_all %}

{% for k,v in ds.items %}

{% if forloop.counter|divisibleby:2 == 1 %}

'{{ v }}',

{% endif %}

{% endfor %}

{% endfor %}

];

所以對於其他的陣列也是如法炮製。很快就能夠搞定了。

看到原來冷冰冰的資料在這種分析中有了新的含義,心裡面是亮堂的。

來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/23718752/viewspace-2152350/,如需轉載,請註明出處,否則將追究法律責任。

相關文章