R語言中使用線性模型、迴歸決策樹自動組合特徵因子水平

tecdat發表於2020-08-21

原文連結: http://tecdat.cn/?p=14569 

每次我們在應用計量經濟學課程中遇到實際應用時,我們都要處理類別變數。學生也提出了同樣的問題:我們如何自動組合因子水平?有簡單的R函式嗎?

因此我想編寫一個R函式。為了說明這一點,請考慮以下內容

'data.frame':	200 obs. of  3 variables:$ y : num  1.345 1.863 1.946 2.481 0.765 ...$ x1: num  0.266 0.372 0.573 0.908 0.202 ...$ x2: Factor w/ 10 levels "I","A","H","F",..: 4 4 6 4 3 6 7 3 4 8 ...table(b$x2)[LETTERS[1:10]]A  B  C  D  E  F  G  H  I  J11 12 23 34 23 36 12 32  3 14

沒有定義一個(連續的)因變數,沒有定義一個連續的協變數,也沒有定義一個分類變數,此處有十個級別。我們可以使用

plot(b$x1,y,col="white",xlim=c(0,1.1))text(b$x1,y,as.character(b$x2),cex=.5)

 

線性迴歸的輸出得出以下預測

for(i in 1:10){lines(u,v)}

 

 

斜率是相同的,我們只需為每個級別新增一個不同的常數。如我們所見,某些級別非常接近,因此將它們組合為一個類別。這是線性迴歸的輸出,

Coefficients:Estimate Std. Error t value Pr(>|t|)(Intercept)  0.843802   0.119655   7.052 3.23e-11 ***x1           1.992878   0.053838  37.016  < 2e-16 ***x2A          0.055500   0.131173   0.423   0.6727x2H          0.009293   0.121626   0.076   0.9392x2F         -0.177002   0.121020  -1.463   0.1452x2B         -0.218152   0.130192  -1.676   0.0955 .x2D         -0.206970   0.121294  -1.706   0.0896 .x2G         -0.407417   0.129999  -3.134   0.0020 **x2C         -0.526708   0.123690  -4.258 3.24e-05 ***x2J         -0.664281   0.128126  -5.185 5.54e-07 ***x2E         -0.816454   0.123625  -6.604 3.94e-10 ***---Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.2014 on 189 degrees of freedomMultiple R-squared:  0.8995,	Adjusted R-squared:  0.8942F-statistic: 169.1 on 10 and 189 DF,  p-value: < 2.2e-16AIC[1] -60.74443BIC[1] -21.16463

這裡的參考類別是“ I”。看起來我們實際上可以將該類別與其他幾個類別結合起來。這裡的一種策略是選擇似乎沒有顯著差異的所有類別,然後執行(多個)測試

Hypothesis:x2A = 0x2H = 0x2F = 0Model 1: restricted modelModel 2: y ~ x1 + x2Res.Df    RSS Df Sum of Sq      F Pr(>F)1    192 8.46512    189 7.6654  3   0.79971 6.5726  3e-04 ***---Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

我們可以將這四個類別結合在一起。

我們看到更改參考類別時的情況(在所有類別上迴圈)

plot(1:nlevels(b$x2),1:nlevels(b$x2),col="white",xlab="",ylab="",axes=F,xlim=c(0,10.5),ylim=c(0,10.5))points(((1:10))[idx],rep(i,length(idx)),pch=1,cex=2)points(((1:10))[idx],rep(i,length(idx)),pch=19,cex=2)}

 

 

我們看到它是對稱的:如果將“ H”與“ I”組合,則“ I”也應與“ H”組合。

我們可以手動預定義一些順序

for(i in 1:nlevels(b$x2)){points(((1:10))[idx],rep(i,length(idx)),pch=1,cex=2)idx=which(p>.1)points(((1:10))[idx],rep(i,length(idx)),pch=19,cex=2)}

我們得到

 

我們已經合併了類別。

實際上,可以使用其他策略。我們從某個級別開始,說“ A”。然後,我們將其與所有不顯著不同的級別合併。如果“ B”不是其中之一,我們將其用作新參考。

for(i in 1:nlevels(b$x2)){b$x2=recode(b$x2, paste("c('",paste(mix,collapse = "','"),"')='",paste(mix,collapse = "+"),"'",sep=""))}}

最後的類別是

table(b$x2)A+I+H B+D+F   C+G     E     J46    82    35    23    14

有以下回歸輸出

Coefficients:Estimate Std. Error t value Pr(>|t|)(Intercept)  0.86407    0.03950  21.877  < 2e-16 ***x1           1.99180    0.05323  37.417  < 2e-16 ***x2B+D+F     -0.21517    0.03699  -5.817 2.44e-08 ***x2C+G       -0.50545    0.04528 -11.164  < 2e-16 ***x2E         -0.83617    0.05128 -16.305  < 2e-16 ***x2J         -0.68398    0.06131 -11.156  < 2e-16 ***---Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1Residual standard error: 0.2008 on 194 degrees of freedomMultiple R-squared:  0.8975,	Adjusted R-squared:  0.8948F-statistic: 339.6 on 5 and 194 DF,  p-value: < 2.2e-16AIC[1] -66.76939BIC[1] -43.68117

這與我們之前得到的組一致。但是,如果我們更改順序,我們可以得到不同的組合。例如,如果我們從“ J”到“ A”,而不是從“ A”到“ J”,我們得到

for(i in nlevels(b$x2):1){mix=c(LETTERS[i],names(p)[idx])b$x2=recode(b$x2, paste("c('",paste(mix,collapse = "','"),"')='",paste(mix,collapse = "+"),"'",sep=""))}}table(b$x2)E         G+C I+A+B+D+F+H           J23          35         128          14

這裡有不同的資訊標準

AIC(lm(y~x1+x2,data=b))[1] -36.61665BIC(lm(y~x1+x2,data=b))[1] -16.82675

最後但重要的一點是,可以使用迴歸樹。問題是還有另一個可能相互干擾的解釋變數。所以我建議(1)擬合線性模型,計算殘差(2)執行迴歸樹,解釋未定義分類變數

 

 

觀察葉子與我們得到的葉子具有相同的組。

arbren= 200node), split, n, deviance, yval* denotes terminal node1) root 200 22.563500  7.771561e-182) x2=G,C,J,E 72  4.441495 -3.232525e-014) x2=J,E 37  1.553520 -4.578492e-01 *5) x2=G,C 35  1.509068 -1.809646e-01 *3) x2=I,A,H,F,B,D 128  6.366628  1.818295e-016) x2=F,B,D 82  2.983381  1.048246e-01 *7) x2=I,A,H 46  2.030229  3.190993e-01 *

我想有可能改善迴歸的水平組合。


來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69982319/viewspace-2713741/,如需轉載,請註明出處,否則將追究法律責任。

相關文章