1 二叉樹的遞迴套路
1、 可以解決面試中的絕大部分二叉樹(95%以上)的問題,尤其是樹形dp問題
2、 其本質是利用遞迴遍歷二叉樹的便利性,每個節點在遞迴的過程中可以回到該節點3次
具體步驟為:
- 假設以X節點為頭,假設可以向X左樹和右樹要任何資訊
- 在上一步的假設下,討論以X為頭結點的樹,得到答案的可能性(最重要),常見分類是與X無關的答案,與X有關的答案
- 列出所有可能性後,確定到底需要向左樹和右樹要什麼樣的資訊
- 把左樹資訊和右樹資訊求全集,就是任何一顆子樹都需要返回的資訊S
- 遞迴函式都返回S,每顆子樹都這麼要求
- 寫程式碼,在程式碼中考慮如何把左樹資訊和右樹資訊整合出整棵樹的資訊
1.1 二叉樹的遞迴套路深度實踐
1.1.1 例一:判斷二叉樹平衡與否
給定一棵二叉樹的頭結點head,返回這顆二叉樹是不是平衡二叉樹
平衡樹概念:在一棵二叉樹中,每一個子樹,左樹的高度和右樹的高度差不超過1
那麼如果以X為頭的這顆樹,要做到平衡,那麼X的左樹要是平衡的,右樹也是平衡的,且X的左樹高度和右樹高度差不超過1
所以該題,我們X需要向左右子樹要的資訊為,1.高度 2. 是否平衡
package class08;
public class Code01_IsBalanced {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static boolean isBalanced1(Node head) {
boolean[] ans = new boolean[1];
ans[0] = true;
process1(head, ans);
return ans[0];
}
public static int process1(Node head, boolean[] ans) {
if (!ans[0] || head == null) {
return -1;
}
int leftHeight = process1(head.left, ans);
int rightHeight = process1(head.right, ans);
if (Math.abs(leftHeight - rightHeight) > 1) {
ans[0] = false;
}
return Math.max(leftHeight, rightHeight) + 1;
}
public static boolean isBalanced2(Node head) {
return process2(head).isBalaced;
}
// 左、右要求一樣,Info 表示資訊返回的結構體
public static class Info {
// 是否平衡
public boolean isBalaced;
// 高度多少
public int height;
public Info(boolean b, int h) {
isBalaced = b;
height = h;
}
}
// 遞迴呼叫,X自身也要返回資訊Info。
// 解決X節點(當前節點)怎麼返回Info資訊
public static Info process2(Node X) {
// base case
if (X == null) {
return new Info(true, 0);
}
// 得到左樹資訊
Info leftInfo = process2(X.left);
// 得到右樹資訊
Info rightInfo = process2(X.right);
// 高度等於左右最大高度,加上當前頭結點的高度1
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
boolean isBalanced = true;
// 左樹不平衡或者右樹不平衡,或者左右兩子樹高度差超過1
// 那麼當前節點為頭的樹,不平衡
if (!leftInfo.isBalaced || !rightInfo.isBalaced || Math.abs(leftInfo.height - rightInfo.height) > 1) {
isBalanced = false;
}
// 加工出當前節點的資訊返回
return new Info(isBalanced, height);
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
public static void main(String[] args) {
int maxLevel = 5;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
if (isBalanced1(head) != isBalanced2(head)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
1.1.2 例二:返回二叉樹任意兩個節點最大值
給定一棵二叉樹的頭結點head,任何兩個節點之間都存在距離,返回整棵二叉樹的最大距離
1、有可能最大距離和當前節點X無關,即最大距離是X左樹的最大距離,或者右樹的最大距離
2、最大距離跟X有關,即最大距離通過X。左樹離X最遠的點,到X右樹上離X最遠的點。即X左樹的高度加上X自身高度1,加上X右樹上的高度
結論:那麼根據遞迴套路,我們每次遞迴,需要返回X左樹的最大距離和高度,同理返回X右樹的最大距離和高度。Info包含最大距離和高度
package class08;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
public class Code08_MaxDistance {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static int maxDistance1(Node head) {
if (head == null) {
return 0;
}
ArrayList<Node> arr = getPrelist(head);
HashMap<Node, Node> parentMap = getParentMap(head);
int max = 0;
for (int i = 0; i < arr.size(); i++) {
for (int j = i; j < arr.size(); j++) {
max = Math.max(max, distance(parentMap, arr.get(i), arr.get(j)));
}
}
return max;
}
public static ArrayList<Node> getPrelist(Node head) {
ArrayList<Node> arr = new ArrayList<>();
fillPrelist(head, arr);
return arr;
}
public static void fillPrelist(Node head, ArrayList<Node> arr) {
if (head == null) {
return;
}
arr.add(head);
fillPrelist(head.left, arr);
fillPrelist(head.right, arr);
}
public static HashMap<Node, Node> getParentMap(Node head) {
HashMap<Node, Node> map = new HashMap<>();
map.put(head, null);
fillParentMap(head, map);
return map;
}
public static void fillParentMap(Node head, HashMap<Node, Node> parentMap) {
if (head.left != null) {
parentMap.put(head.left, head);
fillParentMap(head.left, parentMap);
}
if (head.right != null) {
parentMap.put(head.right, head);
fillParentMap(head.right, parentMap);
}
}
public static int distance(HashMap<Node, Node> parentMap, Node o1, Node o2) {
HashSet<Node> o1Set = new HashSet<>();
Node cur = o1;
o1Set.add(cur);
while (parentMap.get(cur) != null) {
cur = parentMap.get(cur);
o1Set.add(cur);
}
cur = o2;
while (!o1Set.contains(cur)) {
cur = parentMap.get(cur);
}
Node lowestAncestor = cur;
cur = o1;
int distance1 = 1;
while (cur != lowestAncestor) {
cur = parentMap.get(cur);
distance1++;
}
cur = o2;
int distance2 = 1;
while (cur != lowestAncestor) {
cur = parentMap.get(cur);
distance2++;
}
return distance1 + distance2 - 1;
}
public static int maxDistance2(Node head) {
return process(head).maxDistance;
}
// 我們的資訊,整棵樹的最大距離和整棵樹的高度
public static class Info {
public int maxDistance;
public int height;
public Info(int dis, int h) {
maxDistance = dis;
height = h;
}
}
// 以X節點為頭
public static Info process(Node X) {
// base case
if (X == null) {
return new Info(0, 0);
}
// 預設從左樹拿到我們需要的info
Info leftInfo = process(X.left);
// 預設從右樹拿到我們需要的info
Info rightInfo = process(X.right);
// 用左右樹的資訊,加工自身的info
// 自身的高度是,左右較大的高度加上自身節點高度1
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
// 自身最大距離,是左右樹最大距離和左右樹高度相加再加1,求最大值
int maxDistance = Math.max(
Math.max(leftInfo.maxDistance, rightInfo.maxDistance),
leftInfo.height + rightInfo.height + 1);
// 自身的info返回
return new Info(maxDistance, height);
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
public static void main(String[] args) {
int maxLevel = 4;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
if (maxDistance1(head) != maxDistance2(head)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
1.1.3 例三:返回二叉樹中的最大二叉搜尋樹Size
給定個一顆二叉樹的頭結點head,返回這顆二叉樹中最大的二叉搜尋樹的Size
搜尋二叉樹概念:整顆樹上沒有重複值,左樹的值都比我小,右樹的值都比我大。每顆子樹都如此。
遞迴套路。1、與當前節點X無關,即最終找到的搜尋二叉樹,不以X為頭
2、與X有關,那麼X的左樹整體是搜尋二叉樹,右樹同理,且左樹的最大值小於X,右樹的最小值大於X
package class08;
import java.util.ArrayList;
public class Code04_MaxSubBSTSize {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static int getBSTSize(Node head) {
if (head == null) {
return 0;
}
ArrayList<Node> arr = new ArrayList<>();
in(head, arr);
for (int i = 1; i < arr.size(); i++) {
if (arr.get(i).value <= arr.get(i - 1).value) {
return 0;
}
}
return arr.size();
}
public static void in(Node head, ArrayList<Node> arr) {
if (head == null) {
return;
}
in(head.left, arr);
arr.add(head);
in(head.right, arr);
}
public static int maxSubBSTSize1(Node head) {
if (head == null) {
return 0;
}
int h = getBSTSize(head);
if (h != 0) {
return h;
}
return Math.max(maxSubBSTSize1(head.left), maxSubBSTSize1(head.right));
}
public static int maxSubBSTSize2(Node head) {
if (head == null) {
return 0;
}
return process(head).maxSubBSTSize;
}
// public static Info process(Node head) {
// if (head == null) {
// return null;
// }
// Info leftInfo = process(head.left);
// Info rightInfo = process(head.right);
// int min = head.value;
// int max = head.value;
// int maxSubBSTSize = 0;
// if (leftInfo != null) {
// min = Math.min(min, leftInfo.min);
// max = Math.max(max, leftInfo.max);
// maxSubBSTSize = Math.max(maxSubBSTSize, leftInfo.maxSubBSTSize);
// }
// if (rightInfo != null) {
// min = Math.min(min, rightInfo.min);
// max = Math.max(max, rightInfo.max);
// maxSubBSTSize = Math.max(maxSubBSTSize, rightInfo.maxSubBSTSize);
// }
// boolean isBST = false;
// if ((leftInfo == null ? true : (leftInfo.isAllBST && leftInfo.max < head.value))
// && (rightInfo == null ? true : (rightInfo.isAllBST && rightInfo.min > head.value))) {
// isBST = true;
// maxSubBSTSize = (leftInfo == null ? 0 : leftInfo.maxSubBSTSize)
// + (rightInfo == null ? 0 : rightInfo.maxSubBSTSize) + 1;
// }
// return new Info(isBST, maxSubBSTSize, min, max);
// }
// 任何子樹,都返回4個資訊
public static class Info {
// 整體是否是二叉搜尋樹
public boolean isAllBST;
// 最大的滿足二叉搜尋樹樹條件的size
public int maxSubBSTSize;
// 整棵樹的最小值
public int min;
// 整棵樹的最大值
public int max;
public Info(boolean is, int size, int mi, int ma) {
isAllBST = is;
maxSubBSTSize = size;
min = mi;
max = ma;
}
}
// 以X為頭
public static Info process(Node X) {
// base case
if(X == null) {
return null;
}
// 預設左樹可以給我info資訊
Info leftInfo = process(X.left);
// 預設右樹可以給我info資訊
Info rightInfo = process(X.right);
// 通過左右樹給我的資訊,加工我自己的info
int min = X.value;
int max = X.value;
// 左樹不為空,加工min和max
if(leftInfo != null) {
min = Math.min(min, leftInfo.min);
max = Math.max(max, leftInfo.max);
}
// 右樹不為空,加工min和max
if(rightInfo != null) {
min = Math.min(min, rightInfo.min);
max = Math.max(max, rightInfo.max);
}
// 可能性1與X無關的情況
int maxSubBSTSize = 0;
if(leftInfo != null) {
maxSubBSTSize = leftInfo.maxSubBSTSize;
}
if(rightInfo !=null) {
maxSubBSTSize = Math.max(maxSubBSTSize, rightInfo.maxSubBSTSize);
}
// 可能性2,與X有關
boolean isAllBST = false;
if(
// 左樹和人右樹整體需要是搜尋二叉樹
( leftInfo == null ? true : leftInfo.isAllBST )
&&
( rightInfo == null ? true : rightInfo.isAllBST )
&&
// 左樹最大值<X,右樹最小值>X
(leftInfo == null ? true : leftInfo.max < X.value)
&&
(rightInfo == null ? true : rightInfo.min > X.value)
) {
maxSubBSTSize =
(leftInfo == null ? 0 : leftInfo.maxSubBSTSize)
+
(rightInfo == null ? 0 : rightInfo.maxSubBSTSize)
+
1;
isAllBST = true;
}
return new Info(isAllBST, maxSubBSTSize, min, max);
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
public static void main(String[] args) {
int maxLevel = 4;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
if (maxSubBSTSize1(head) != maxSubBSTSize2(head)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
1.1.4 例四:派對最大快樂值
排隊最大快樂值問題,員工資訊定義如下,多叉樹結構:
class Employee{
// 這名員工可以帶來的快樂值
public int happy;
// 這名員工有哪些直接的下級
List<Employee> subordinates;
}
每個員工都符合Employee類的描述,整個公司的人員結構可以看作是一顆標準的,沒有環的多叉樹。樹的頭結點是公司唯一的老闆。除了老闆外的每個員工都有唯一的直接上級。葉節點是沒有任何下屬的基層員工(subordinates為空),除了基層員工股外,每個員工都有一個或多個直接下級。
現在公司要來辦party,你可以決定哪些員工來,哪些員工不來,規則:
1、 如果某個員工來了,那麼這個員工的所有直接下級都不能來
2、 排隊的整體快樂值是所有到場員工的快樂值的累加
3、 你的目標是讓排隊的整體快樂值儘量的大
給定一顆多叉樹頭結點boss,請返回排隊的最大快樂值
思路:根據X來與不來分類
如果X來,我們能獲得X的快樂值X.happy。X的直接子不能來,但我們能拿到X某個子樹整棵樹的的最大快樂值
如果X不來,不發請柬,我們能獲得X的快樂值為0,X直接子樹頭結點來或者不來求最大值...
package class08;
import java.util.ArrayList;
import java.util.List;
public class Code09_MaxHappy {
// 員工對應的多叉樹節點結構
public static class Employee {
public int happy;
public List<Employee> nexts;
public Employee(int h) {
happy = h;
nexts = new ArrayList<>();
}
}
public static int maxHappy1(Employee boss) {
if (boss == null) {
return 0;
}
return process1(boss, false);
}
public static int process1(Employee cur, boolean up) {
if (up) {
int ans = 0;
for (Employee next : cur.nexts) {
ans += process1(next, false);
}
return ans;
} else {
int p1 = cur.happy;
int p2 = 0;
for (Employee next : cur.nexts) {
p1 += process1(next, true);
p2 += process1(next, false);
}
return Math.max(p1, p2);
}
}
public static int maxHappy2(Employee boss) {
if (boss == null) {
return 0;
}
Info all = process2(boss);
return Math.max(all.yes, all.no);
}
// 遞迴資訊
public static class Info {
// 頭結點在來的情況下整棵樹的最大值
public int yes;
// 頭結點在不來的情況下整棵樹的最大值
public int no;
public Info(int y, int n) {
yes = y;
no = n;
}
}
public static Info process2(Employee x) {
// base case 基層員工
if (x.nexts.isEmpty()) {
return new Info(x.happy, 0);
}
// 當前X來的初始值
int yes = x.happy;
// 當前X不來的初始值
int no = 0;
// 每棵子樹呼叫遞迴資訊
for (Employee next : x.nexts) {
Info nextInfo = process2(next);
// 根據子樹的遞迴返回的資訊,加工自身的info
// 如果X來,子不來
yes += nextInfo.no;
// 如果X不來,子不確定來不來
no += Math.max(nextInfo.yes, nextInfo.no);
}
return new Info(yes, no);
}
// for test
public static Employee genarateBoss(int maxLevel, int maxNexts, int maxHappy) {
if (Math.random() < 0.02) {
return null;
}
Employee boss = new Employee((int) (Math.random() * (maxHappy + 1)));
genarateNexts(boss, 1, maxLevel, maxNexts, maxHappy);
return boss;
}
// for test
public static void genarateNexts(Employee e, int level, int maxLevel, int maxNexts, int maxHappy) {
if (level > maxLevel) {
return;
}
int nextsSize = (int) (Math.random() * (maxNexts + 1));
for (int i = 0; i < nextsSize; i++) {
Employee next = new Employee((int) (Math.random() * (maxHappy + 1)));
e.nexts.add(next);
genarateNexts(next, level + 1, maxLevel, maxNexts, maxHappy);
}
}
public static void main(String[] args) {
int maxLevel = 4;
int maxNexts = 7;
int maxHappy = 100;
int testTimes = 100000;
for (int i = 0; i < testTimes; i++) {
Employee boss = genarateBoss(maxLevel, maxNexts, maxHappy);
if (maxHappy1(boss) != maxHappy2(boss)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
1.1.5 例五:判斷二叉樹是否是滿二叉樹
給定一棵二叉樹的頭結點head,返回這顆二叉樹是不是滿二叉樹。
思路:滿二叉樹一定滿足2^L - 1 == N,其中L是這顆二叉樹的高度,N是這顆二叉樹的節點個數
package class08;
public class Code02_IsFull {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static boolean isFull1(Node head) {
if (head == null) {
return true;
}
int height = h(head);
int nodes = n(head);
return (1 << height) - 1 == nodes;
}
public static int h(Node head) {
if (head == null) {
return 0;
}
return Math.max(h(head.left), h(head.right)) + 1;
}
public static int n(Node head) {
if (head == null) {
return 0;
}
return n(head.left) + n(head.right) + 1;
}
public static boolean isFull2(Node head) {
if (head == null) {
return true;
}
// 如果滿足公式是滿二叉樹
Info all = process(head);
return (1 << all.height) - 1 == all.nodes;
}
// 資訊
public static class Info {
public int height;
public int nodes;
public Info(int h, int n) {
height = h;
nodes = n;
}
}
// 遞迴套路
public static Info process(Node head) {
if (head == null) {
return new Info(0, 0);
}
Info leftInfo = process(head.left);
Info rightInfo = process(head.right);
// 高度
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
// 節點數
int nodes = leftInfo.nodes + rightInfo.nodes + 1;
return new Info(height, nodes);
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
public static void main(String[] args) {
int maxLevel = 5;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
if (isFull1(head) != isFull2(head)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
1.1.6 例六:二叉搜尋樹的頭結點
給定一棵二叉樹的頭結點head,返回這顆二叉樹中最大的二叉搜尋子樹的頭節點
和前文的返回二叉搜尋子樹的Size問題類似
package class08;
import java.util.ArrayList;
public class Code05_MaxSubBSTHead {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
public static int getBSTSize(Node head) {
if (head == null) {
return 0;
}
ArrayList<Node> arr = new ArrayList<>();
in(head, arr);
for (int i = 1; i < arr.size(); i++) {
if (arr.get(i).value <= arr.get(i - 1).value) {
return 0;
}
}
return arr.size();
}
public static void in(Node head, ArrayList<Node> arr) {
if (head == null) {
return;
}
in(head.left, arr);
arr.add(head);
in(head.right, arr);
}
public static Node maxSubBSTHead1(Node head) {
if (head == null) {
return null;
}
if (getBSTSize(head) != 0) {
return head;
}
Node leftAns = maxSubBSTHead1(head.left);
Node rightAns = maxSubBSTHead1(head.right);
return getBSTSize(leftAns) >= getBSTSize(rightAns) ? leftAns : rightAns;
}
public static Node maxSubBSTHead2(Node head) {
if (head == null) {
return null;
}
return process(head).maxSubBSTHead;
}
// 每一棵子樹Info
public static class Info {
public Node maxSubBSTHead;
public int maxSubBSTSize;
public int min;
public int max;
public Info(Node h, int size, int mi, int ma) {
maxSubBSTHead = h;
maxSubBSTSize = size;
min = mi;
max = ma;
}
}
public static Info process(Node X) {
if (X == null) {
return null;
}
Info leftInfo = process(X.left);
Info rightInfo = process(X.right);
int min = X.value;
int max = X.value;
Node maxSubBSTHead = null;
int maxSubBSTSize = 0;
if (leftInfo != null) {
min = Math.min(min, leftInfo.min);
max = Math.max(max, leftInfo.max);
maxSubBSTHead = leftInfo.maxSubBSTHead;
maxSubBSTSize = leftInfo.maxSubBSTSize;
}
if (rightInfo != null) {
min = Math.min(min, rightInfo.min);
max = Math.max(max, rightInfo.max);
if (rightInfo.maxSubBSTSize > maxSubBSTSize) {
maxSubBSTHead = rightInfo.maxSubBSTHead;
maxSubBSTSize = rightInfo.maxSubBSTSize;
}
}
if ((leftInfo == null ? true : (leftInfo.maxSubBSTHead == X.left && leftInfo.max < X.value))
&& (rightInfo == null ? true : (rightInfo.maxSubBSTHead == X.right && rightInfo.min > X.value))) {
maxSubBSTHead = X;
maxSubBSTSize = (leftInfo == null ? 0 : leftInfo.maxSubBSTSize)
+ (rightInfo == null ? 0 : rightInfo.maxSubBSTSize) + 1;
}
return new Info(maxSubBSTHead, maxSubBSTSize, min, max);
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
public static void main(String[] args) {
int maxLevel = 4;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
if (maxSubBSTHead1(head) != maxSubBSTHead2(head)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
1.1.7 例子七:是否是完全二叉樹
給定一棵二叉樹的頭結點head,返回這顆二叉樹是不是完全二叉樹
完全二叉樹概念在堆的章節,有介紹。
寬度優先遍歷解決思路:
1、如果用樹的寬度優先遍歷的話,如果某個節點有右孩子,但是沒有左孩子,一定不是完全二叉樹
2、在1條件的基礎上,一旦遇到第一個左右孩子不雙全的節點,後續所有節點必須為葉子節點
二叉樹遞迴套路解法思路:
1、滿二叉樹(無缺口),一定是完全二叉樹。此時左右樹需要給X的資訊是,是否是滿的和高度。如果左右樹滿,且左右樹高度一樣,那麼是該種情況--滿二叉樹
2、有缺口,1缺口可能停在我的左樹上。左樹需要給我是否是完全二叉樹,右樹需要給X是否是滿二叉樹,且左樹高度比右樹高度大1
3、缺口可能在左右樹的分界。左樹是滿的,右樹也是滿的,左樹高度比右樹大1
4、左樹已經滿了,缺口可能在我的右樹上。左樹是滿的,右樹是完全二叉樹,且左右樹高度一樣
所以我們的遞迴時,需要向子樹要的資訊為:是否是完全二叉樹,是否是滿二叉樹,高度
package class08;
import java.util.LinkedList;
public class Code06_IsCBT {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
// 寬度優先遍歷解決方法
public static boolean isCBT1(Node head) {
if (head == null) {
return true;
}
LinkedList<Node> queue = new LinkedList<>();
// 是否遇到過左右兩個孩子不雙全的節點
boolean leaf = false;
Node l = null;
Node r = null;
queue.add(head);
while (!queue.isEmpty()) {
head = queue.poll();
l = head.left;
r = head.right;
if (
// 如果遇到了不雙全的節點之後,又發現當前節點不是葉節點
(leaf && (l != null || r != null)) || (l == null && r != null)
) {
return false;
}
if (l != null) {
queue.add(l);
}
if (r != null) {
queue.add(r);
}
if (l == null || r == null) {
leaf = true;
}
}
return true;
}
// 遞迴的解法
public static boolean isCBT2(Node head) {
if (head == null) {
return true;
}
return process(head).isCBT;
}
// 對每一棵子樹,是否是滿二叉樹、是否是完全二叉樹、高度
public static class Info {
public boolean isFull;
public boolean isCBT;
public int height;
public Info(boolean full, boolean cbt, int h) {
isFull = full;
isCBT = cbt;
height = h;
}
}
// 對於任何節點,我們要返回三個元素組成的Info
public static Info process(Node X) {
// 如果是空樹,我們封裝Info而不是返回為空
// 方便下文不需要額外增加判空處理
if (X == null) {
return new Info(true, true, 0);
}
// 左樹info
Info leftInfo = process(X.left);
// 右樹info
Info rightInfo = process(X.right);
// 接下來整合當前X的Info
// 高度資訊=左右樹最大高度值+1
int height = Math.max(leftInfo.height, rightInfo.height) + 1;
// X是否是滿二叉樹資訊=左右都是滿且左右高度一樣
boolean isFull = leftInfo.isFull
&&
rightInfo.isFull
&& leftInfo.height == rightInfo.height;
// X是否是完全二叉樹
boolean isCBT = false;
// 滿二叉樹是完全二叉樹
if (isFull) {
isCBT = true;
// 以x為頭整棵樹,不滿
} else {
// 左右都是完全二叉樹才有討論的必要
if (leftInfo.isCBT && rightInfo.isCBT) {
// 第二種情況
if (leftInfo.isCBT
&& rightInfo.isFull
&& leftInfo.height == rightInfo.height + 1) {
isCBT = true;
}
// 第三種情況
if (leftInfo.isFull
&&
rightInfo.isFull
&& leftInfo.height == rightInfo.height + 1) {
isCBT = true;
}
// 第四種情況
if (leftInfo.isFull
&& rightInfo.isCBT && leftInfo.height == rightInfo.height) {
isCBT = true;
}
}
}
return new Info(isFull, isCBT, height);
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
public static void main(String[] args) {
int maxLevel = 5;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
if (isCBT1(head) != isCBT2(head)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
1.1.8 例子八:最低公共祖先
給次那個一顆二叉樹的頭結點head,和另外兩個節點a和b。返回a和b的最低公共祖先
二叉樹的最低公共祖先概念: 任意兩個節點,往父親看,最開始交匯的節點,就是最低公共祖先
解法一:用輔助map,Key表示節點,Value表示節點的父親節點。我們把兩個目標節點的父親以此放到map中,依次遍歷
解法二:使用二叉樹的遞迴套路。
1、o1和o2都不在以X為頭的樹上
2、o1和o2有一個在以X為頭的樹上
3、o1和o2都在以X為頭的樹上
3.1、X為頭的樹,左樹右樹各有一個
3.2、X為頭的樹,左樹含有o1和o2
3.3、X為頭的樹,右樹含有o1和o2
4、X自身就是o1或者o2,即如果X是o1那麼左右樹收集到o2即可,如果X是o2,左右樹收集到o1即可。
package class08;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
public class Code07_lowestAncestor {
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
// 解法1,藉助輔助Map和Set
public static Node lowestAncestor1(Node head, Node o1, Node o2) {
if (head == null) {
return null;
}
// key的父節點是value
HashMap<Node, Node> parentMap = new HashMap<>();
parentMap.put(head, null);
// 遞迴填充map
fillParentMap(head, parentMap);
// 輔助set
HashSet<Node> o1Set = new HashSet<>();
Node cur = o1;
o1Set.add(cur);
// o1Set存入的是沿途所有的父節點
while (parentMap.get(cur) != null) {
cur = parentMap.get(cur);
o1Set.add(cur);
}
cur = o2;
// o2的某個父節點在o1Set中,就是我們要找的節點
while (!o1Set.contains(cur)) {
cur = parentMap.get(cur);
}
return cur;
}
public static void fillParentMap(Node head, HashMap<Node, Node> parentMap) {
if (head.left != null) {
parentMap.put(head.left, head);
fillParentMap(head.left, parentMap);
}
if (head.right != null) {
parentMap.put(head.right, head);
fillParentMap(head.right, parentMap);
}
}
// 解法1,二叉樹遞迴套路解法
public static Node lowestAncestor2(Node head, Node o1, Node o2) {
return process(head, o1, o2).ans;
}
// 任何子樹需要的資訊結構
public static class Info {
// o1和o2的最初交匯點,如果不是在當前這顆X節點的樹上,返回空
public Node ans;
// 在當前子樹上,是否發現過o1和o2
public boolean findO1;
public boolean findO2;
public Info(Node a, boolean f1, boolean f2) {
ans = a;
findO1 = f1;
findO2 = f2;
}
}
public static Info process(Node X, Node o1, Node o2) {
// o1和o2不為空,那麼空樹上的Info如下
if (X == null) {
return new Info(null, false, false);
}
// 左樹返回的Info
Info leftInfo = process(X.left, o1, o2);
// 右樹返回的Info
Info rightInfo = process(X.right, o1, o2);
// 構建X自身需要返回的Info
// X為頭的樹上是否發現了o1
boolean findO1 = X == o1 || leftInfo.findO1 || rightInfo.findO1;
// X為頭的樹上是否發現了o2
boolean findO2 = X == o2 || leftInfo.findO2 || rightInfo.findO2;
// O1和O2最初的交匯點在哪?
// 1) 在左樹上已經提前交匯了,最初交匯點保留左樹的
Node ans = null;
if (leftInfo.ans != null) {
ans = leftInfo.ans;
}
// 2) 在右樹上已經提前交匯了,最初交匯點保留右樹的
if (rightInfo.ans != null) {
ans = rightInfo.ans;
}
// 3) 沒有在左樹或者右樹上提前交匯
if (ans == null) {
// 但是找到了o1和o2,那麼交匯點就是X自身
if (findO1 && findO2) {
ans = X;
}
}
return new Info(ans, findO1, findO2);
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
// for test
public static Node pickRandomOne(Node head) {
if (head == null) {
return null;
}
ArrayList<Node> arr = new ArrayList<>();
fillPrelist(head, arr);
int randomIndex = (int) (Math.random() * arr.size());
return arr.get(randomIndex);
}
// for test
public static void fillPrelist(Node head, ArrayList<Node> arr) {
if (head == null) {
return;
}
arr.add(head);
fillPrelist(head.left, arr);
fillPrelist(head.right, arr);
}
public static void main(String[] args) {
int maxLevel = 4;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
Node o1 = pickRandomOne(head);
Node o2 = pickRandomOne(head);
if (lowestAncestor1(head, o1, o2) != lowestAncestor2(head, o1, o2)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}
二叉樹的遞迴套路,最終轉化為基於X只找可能性即可。即樹形DP問題