題目描述
分析
操作一、二、三為珂朵莉樹的基本操作,操作四、五、六稍作轉化即可
不會珂朵莉樹請移步至這裡
求和操作
把每一段區間分別取出,暴力相加
ll qh(ll l,ll r){
it2=Split(r+1),it1=Split(l);
ll ans=0;
for(it=it1;it!=it2;it++){
ans=(ans+(it->r-it->l+1)*it->val)%mod;
}
return ans;
}
賦值操作
直接呼叫\(Assign\)函式將其推平即可
void Assign(ll l,ll r,ll val){
it2=Split(r+1),it1=Split(l);
s.erase(it1,it2);
s.insert(asd(l,r,val));
}
修改操作
把每一段區間分別取出,暴力修改
void ad(ll l,ll r,ll val){
it2=Split(r+1),it1=Split(l);
for(it=it1;it!=it2;it++){
it->val+=val;
it->val%=mod;
}
}
複製操作
將區間\([l1,r1]\)中的元素取出記錄一下,加入到區間\([l2,r2]\)中即可
void fz(ll l1,ll r1,ll l2,ll r2){
it2=Split(r1+1),it1=Split(l1);
for(tot=0,it=it1;it!=it2;it++){
a[++tot]=l2+it->l-l1,b[tot]=l2+it->r-l1,c[tot]=it->val;
}
for(ll i=1;i<=tot;++i){
Assign(a[i],b[i],c[i]);
}
}
交換操作
套用複製操作
我們可以先將區間\([l1,r1]\)複製到區間\([n+1,n+r1-l1+1]\)中
再將區間\([l2,r2]\)複製到區間\([l1,r1]\)中
最後再把區間\([n+1,n+r1-l1+1]\)複製到區間\([l2,r2]\)中
void jh(ll l1,ll r1,ll l2,ll r2) {
fz(l1,r1,n+1,n+r1-l1+1);
fz(l2,r2,l1,r1);
fz(n+1,n+r1-l1+1,l2,r2);
}
翻轉操作
把區間中的數取出,再倒序加入
vector<asd> g;
void xz(ll l,ll r){
g.clear();
it2=Split(r+1),it1=Split(l);
aa=r;
for(it=it1;it!=it2;it++){
ll l=it->l,r=it->r,val=it->val;
g.push_back(asd(l,r,val));
}
s.erase(it1,it2);
for(ll i=0;i<g.size();i++){
s.insert(asd(aa-(g[i].r-g[i].l),aa,g[i].val));
aa-=(g[i].r-g[i].l+1);
}
}
完整程式碼
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e6+5;
const ll mod=1e9+7;
ll a[maxn],b[maxn],c[maxn];
struct asd{
ll l,r;
mutable ll val;
bool operator < (const asd& A) const{
return l<A.l;
}
asd(ll aa,ll bb,ll cc){
l=aa,r=bb,val=cc;
}
asd(ll aa){
l=aa;
}
};
#define sit set<asd>::iterator
set<asd> s;
ll aa,bb,cc,dd,ee,n,m;
sit it,it1,it2;
sit Split(ll wz){
it=s.lower_bound(asd(wz));
if(it!=s.end() && it->l==wz) return it;
it--;
ll l=it->l,r=it->r,val=it->val;
s.erase(it);
s.insert(asd(l,wz-1,val));
return s.insert(asd(wz,r,val)).first;
}
ll qh(ll l,ll r){
it2=Split(r+1),it1=Split(l);
ll ans=0;
for(it=it1;it!=it2;it++){
ans=(ans+(it->r-it->l+1)*it->val)%mod;
}
return ans;
}
void Assign(ll l,ll r,ll val){
it2=Split(r+1),it1=Split(l);
s.erase(it1,it2);
s.insert(asd(l,r,val));
}
void ad(ll l,ll r,ll val){
it2=Split(r+1),it1=Split(l);
for(it=it1;it!=it2;it++){
it->val+=val;
it->val%=mod;
}
}
vector<asd> g;
void xz(ll l,ll r){
g.clear();
it2=Split(r+1),it1=Split(l);
aa=r;
for(it=it1;it!=it2;it++){
ll l=it->l,r=it->r,val=it->val;
g.push_back(asd(l,r,val));
}
s.erase(it1,it2);
for(ll i=0;i<g.size();i++){
s.insert(asd(aa-(g[i].r-g[i].l),aa,g[i].val));
aa-=(g[i].r-g[i].l+1);
}
}
int tot;
void fz(ll l1,ll r1,ll l2,ll r2){
it2=Split(r1+1),it1=Split(l1);
for(tot=0,it=it1;it!=it2;it++){
a[++tot]=l2+it->l-l1,b[tot]=l2+it->r-l1,c[tot]=it->val;
}
for(ll i=1;i<=tot;++i){
Assign(a[i],b[i],c[i]);
}
}
void jh(ll l1,ll r1,ll l2,ll r2) {
fz(l1,r1,n+1,n+r1-l1+1);
fz(l2,r2,l1,r1);
fz(n+1,n+r1-l1+1,l2,r2);
}
int main(){
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=n;i++){
scanf("%lld",&aa);
s.insert(asd(i,i,aa));
}
s.insert(asd(n+1,n+1,0));
for(ll i=1;i<=m;i++){
scanf("%lld",&aa);
if(aa==1){
scanf("%lld%lld",&bb,&cc);
printf("%lld\n",qh(bb,cc));
} else if(aa==2){
scanf("%lld%lld%lld",&bb,&cc,&dd);
Assign(bb,cc,dd);
} else if(aa==3){
scanf("%lld%lld%lld",&bb,&cc,&dd);
ad(bb,cc,dd);
} else if(aa==4){
scanf("%lld%lld%lld%lld",&bb,&cc,&dd,&ee);
fz(bb,cc,dd,ee);
} else if(aa==5){
scanf("%lld%lld%lld%lld",&bb,&cc,&dd,&ee);
jh(bb,cc,dd,ee);
} else {
scanf("%lld%lld",&bb,&cc);
xz(bb,cc);
}
}
it2=Split(n+1),it1=Split(1);
for(it=it1;it!=it2;it++){
for(ll i=it->l;i<=it->r;i++)printf("%lld ",it->val%mod);
}
printf("\n");
return 0;
}