Lambda演進
小王在公司正在開發一個學生管理系統,產品經理向他提出一個需求,要篩選出年齡大於15的學生,於是小王寫出了以下程式碼:
public static List<Student> filterAgeStudent(List<Student> students) {
List<Student> list = Lists.newArrayList();
for (Student student : students) {
if (student.getAge() > 15) {
list.add(student);
}
}
return list;
}
過了幾天產品經理又提出了一個需求,要篩選出體重大於50KG的學生,於是小王新增了一個方法:
public static List<Student> filterWeightStudent(List<Student> students) {
List<Student> list = Lists.newArrayList();
for (Student student : students) {
if (student.getWeight() > 50) {
list.add(student);
}
}
return list;
}
過了一段時間,產品提出了要篩選出體重大於50並且年齡要大於15的學生,小王突然感覺到這不是一個簡單的需求,於是小王仔細思考了一下,突然想到將每種篩選的策略抽象成為一個介面,並且將這個介面當做一個引數傳入方法中,這樣每次就可以只新增策略,其他程式碼不需要更改了,這樣就滿足了軟體設計的六大原則的開放閉合原則,於是乎誕生以下的設計和程式碼:
public interface StudentPredicate {
boolean filter(Student student);
}
public class AgeStudentPredicate implements StudentPredicate {
@Override
public boolean filter(Student student) {
return student.getAge() > 20 ? true : false;
}
}
public static List<Student> filterStudent(List<Student> students,
StudentPredicate predicate) {
List<Student> list = Lists.newArrayList();
for (Student student : students) {
if (predicate.filter(student)) {
list.add(student);
}
}
return list;
}
經過一段時間的學習,小王接觸到匿名類,於是小王程式碼進行更改,以後再也不需要寫策略了:
List<Student> list = filterStudent(students, new StudentPredicate() {
@Override
public boolean filter(Student student) {
return student.getAge() > 15;
}
});
學習到匿名類以後,小王感覺到Java的浩瀚,然後繼續學習,後來接觸到Lambda,於是對待做了以下改造:
List<Student> list = filterStudent(students, student -> student.getAge() > 15);
Lambda知識整理
Lambda定義
從上面的演進過程,我們基本上可以得到Lambda表示式是一種匿名函式,簡單地說,它是沒有宣告的方法,也即沒有訪問修飾符、返回值宣告和名字。Java中的Lambda表示式通常使用(argument) -> (body)語法書寫,常用的Lamda表示式例子有:
(int a, int b) -> { return a + b; }
() -> System.out.println("Hello World");
(String s) -> { System.out.println(s); }
函式式介面
函式式介面指的是是隻包含一個抽象方法宣告的介面。例如java.lang.Runnable就是一種函式式介面,在 Runnable介面中只宣告瞭一個抽象方法方法void run();
@FunctionalInterface
public interface Runnable {
public abstract void run();
}
對於註解@FunctionalInterface對於lamda表示式來說的話並不是必要的,@FunctionalInterface是Java8新加入的一種介面,用於指明該介面型別宣告是根據Java語言規範定義的函式式介面。Java8還宣告瞭一些Lambda表示式可以使用的函式式介面,當你註釋的介面不是有效的函式式介面時,可以使用@FunctionalInterface解決編譯層面的錯誤。
常用函式式
Java8中在java.util.function中引入了很多的函式式介面,這裡介紹一下3個常用的函式式介面,
- Predicate
Predicate介面定義一個名叫test的抽象方法,它接收泛型T物件,並返回一個boolean型別。經常使用到的地方是在流處理的過程中filter方法,滿足條件的資料才會被過濾出來,例如我們上面的例子也可以改造成為Predicate函式式介面的形式。
@FunctionalInterface
public interface Predicate<T> {
boolean test(T t);
}
public static List<Student> filterStudent(List<Student> students,
Predicate<Student> predicate) {
List<Student> list = Lists.newArrayList();
for (Student student : students) {
if (predicate.test(student)) {
list.add(student);
}
}
return list;
}
- Consumer
Consumer定義一個名叫accept的抽象方法,他接受泛型T的物件,沒有返回值。如果你需要訪問泛型物件T,並其進行修改,就使用Consumer。經常使用的地方就是常用的forEach方法。
@FunctionalInterface
public interface Consumer<T> {
void accept(T t);
}
void forEachOrdered(Consumer<? super T> action);
- Function
Function定義一個叫apply的方法,他接受一個泛型物件T,返回一個泛型物件R。如果你需要定義一個Lambda表示式,將輸入的物件對映到輸出,就使用Function,經常使用到的地方就是常用的map方法。
@FunctionalInterface
public interface Function<T, R> {
R apply(T t);
}
<R> Stream<R> map(Function<? super T, ? extends R> mapper);
Lambda原理窺探
小王經過上面一系列學習,開始思考Lambda的原理是什麼,因為Java8中每一個Lambda表示式必須有一個函式式介面與之對應,小王就思考經過編譯器編譯以後到可能實現的方式有兩種,一種生成實現介面的類,另外一種是內部類,於是決定看一下反編譯的以後程式碼,以解除心中的疑惑;
@FunctionalInterface
public interface Func {
int add(int x, int y);
}
public class LambdaTest {
public static void main(String[] args) {
Func func = (x, y) -> x + y;
System.out.println(func.add(1, 2));
}
}
通過javap -p -v -c LambdaTest.class檢視反編譯後的程式碼,
Classfile /Users/wangtongzhou/Documents/Java/learning/target/classes/com/springboot2/learning/javabasic/java8/LambdaTest.class
Last modified 2020-7-11; size 1392 bytes
MD5 checksum ec7d77a8b0b0a0cb5940f80a9b27b3d0
Compiled from "LambdaTest.java"
public class com.springboot2.learning.javabasic.java8.LambdaTest
minor version: 0
major version: 52
flags: ACC_PUBLIC, ACC_SUPER
Constant pool:
#1 = Methodref #7.#29 // java/lang/Object."<init>":()V
#2 = InvokeDynamic #0:#34 // #0:add:()Lcom/springboot2/learning/javabasic/java8/Func;
#3 = Fieldref #35.#36 // java/lang/System.out:Ljava/io/PrintStream;
#4 = InterfaceMethodref #37.#38 // com/springboot2/learning/javabasic/java8/Func.add:(II)I
#5 = Methodref #39.#40 // java/io/PrintStream.println:(I)V
#6 = Class #41 // com/springboot2/learning/javabasic/java8/LambdaTest
#7 = Class #42 // java/lang/Object
#8 = Utf8 <init>
#9 = Utf8 ()V
#10 = Utf8 Code
#11 = Utf8 LineNumberTable
#12 = Utf8 LocalVariableTable
#13 = Utf8 this
#14 = Utf8 Lcom/springboot2/learning/javabasic/java8/LambdaTest;
#15 = Utf8 main
#16 = Utf8 ([Ljava/lang/String;)V
#17 = Utf8 args
#18 = Utf8 [Ljava/lang/String;
#19 = Utf8 func
#20 = Utf8 Lcom/springboot2/learning/javabasic/java8/Func;
#21 = Utf8 MethodParameters
#22 = Utf8 lambda$main$0
#23 = Utf8 (II)I
#24 = Utf8 x
#25 = Utf8 I
#26 = Utf8 y
#27 = Utf8 SourceFile
#28 = Utf8 LambdaTest.java
#29 = NameAndType #8:#9 // "<init>":()V
#30 = Utf8 BootstrapMethods
#31 = MethodHandle #6:#43 // invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;
#32 = MethodType #23 // (II)I
#33 = MethodHandle #6:#44 // invokestatic com/springboot2/learning/javabasic/java8/LambdaTest.lambda$main$0:(II)I
#34 = NameAndType #45:#46 // add:()Lcom/springboot2/learning/javabasic/java8/Func;
#35 = Class #47 // java/lang/System
#36 = NameAndType #48:#49 // out:Ljava/io/PrintStream;
#37 = Class #50 // com/springboot2/learning/javabasic/java8/Func
#38 = NameAndType #45:#23 // add:(II)I
#39 = Class #51 // java/io/PrintStream
#40 = NameAndType #52:#53 // println:(I)V
#41 = Utf8 com/springboot2/learning/javabasic/java8/LambdaTest
#42 = Utf8 java/lang/Object
#43 = Methodref #54.#55 // java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;
#44 = Methodref #6.#56 // com/springboot2/learning/javabasic/java8/LambdaTest.lambda$main$0:(II)I
#45 = Utf8 add
#46 = Utf8 ()Lcom/springboot2/learning/javabasic/java8/Func;
#47 = Utf8 java/lang/System
#48 = Utf8 out
#49 = Utf8 Ljava/io/PrintStream;
#50 = Utf8 com/springboot2/learning/javabasic/java8/Func
#51 = Utf8 java/io/PrintStream
#52 = Utf8 println
#53 = Utf8 (I)V
#54 = Class #57 // java/lang/invoke/LambdaMetafactory
#55 = NameAndType #58:#62 // metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;
#56 = NameAndType #22:#23 // lambda$main$0:(II)I
#57 = Utf8 java/lang/invoke/LambdaMetafactory
#58 = Utf8 metafactory
#59 = Class #64 // java/lang/invoke/MethodHandles$Lookup
#60 = Utf8 Lookup
#61 = Utf8 InnerClasses
#62 = Utf8 (Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;
#63 = Class #65 // java/lang/invoke/MethodHandles
#64 = Utf8 java/lang/invoke/MethodHandles$Lookup
#65 = Utf8 java/lang/invoke/MethodHandles
{
public com.springboot2.learning.javabasic.java8.LambdaTest();
descriptor: ()V
flags: ACC_PUBLIC
Code:
stack=1, locals=1, args_size=1
0: aload_0
1: invokespecial #1 // Method java/lang/Object."<init>":()V
4: return
LineNumberTable:
line 3: 0
LocalVariableTable:
Start Length Slot Name Signature
0 5 0 this Lcom/springboot2/learning/javabasic/java8/LambdaTest;
public static void main(java.lang.String[]);
descriptor: ([Ljava/lang/String;)V
flags: ACC_PUBLIC, ACC_STATIC
Code:
stack=4, locals=2, args_size=1
0: invokedynamic #2, 0 // InvokeDynamic #0:add:()Lcom/springboot2/learning/javabasic/java8/Func;
5: astore_1
6: getstatic #3 // Field java/lang/System.out:Ljava/io/PrintStream;
9: aload_1
10: iconst_1
11: iconst_2
12: invokeinterface #4, 3 // InterfaceMethod com/springboot2/learning/javabasic/java8/Func.add:(II)I
17: invokevirtual #5 // Method java/io/PrintStream.println:(I)V
20: return
LineNumberTable:
line 5: 0
line 6: 6
line 7: 20
LocalVariableTable:
Start Length Slot Name Signature
0 21 0 args [Ljava/lang/String;
6 15 1 func Lcom/springboot2/learning/javabasic/java8/Func;
MethodParameters:
Name Flags
args
private static int lambda$main$0(int, int);
descriptor: (II)I
flags: ACC_PRIVATE, ACC_STATIC, ACC_SYNTHETIC
Code:
stack=2, locals=2, args_size=2
0: iload_0
1: iload_1
2: iadd
3: ireturn
LineNumberTable:
line 5: 0
LocalVariableTable:
Start Length Slot Name Signature
0 4 0 x I
0 4 1 y I
MethodParameters:
Name Flags
x synthetic
y synthetic
}
SourceFile: "LambdaTest.java"
InnerClasses:
public static final #60= #59 of #63; //Lookup=class java/lang/invoke/MethodHandles$Lookup of class java/lang/invoke/MethodHandles
BootstrapMethods:
0: #31 invokestatic java/lang/invoke/LambdaMetafactory.metafactory:(Ljava/lang/invoke/MethodHandles$Lookup;Ljava/lang/String;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodType;Ljava/lang/invoke/MethodHandle;Ljava/lang/invoke/MethodType;)Ljava/lang/invoke/CallSite;
Method arguments:
#32 (II)I
#33 invokestatic com/springboot2/learning/javabasic/java8/LambdaTest.lambda$main$0:(II)I
反編譯以後lambda表示式被編譯成為一個lambda$main$0的函式,其實就是一段(x, y) -> x + y的方法,在看main方法主要分為以下8個步驟:
- 通過invokedynamic指令生成呼叫物件;
- 存入本地快取;
- 載入java.lang.System.out靜態方法;
- 將lambda表示式生成的物件載入入執行棧;
- 將int型別1載入入執行棧;
- 將int型別2載入入執行棧;
- 執行lambda表示式生成的物件的add方法;
- 輸出執行結果;
重點部分
從mian方法中我們的重點就在於invokedynamic這個指令,重點要了解下是如何通過invokedynamic指令生成目標物件,invokedynamic指令通過找到BootstrapMethods中的方法,生成動態呼叫點,也是呼叫LambdaMetafactory的metafactory方法。
public static CallSite metafactory(MethodHandles.Lookup caller,
String invokedName,
MethodType invokedType,
MethodType samMethodType,
MethodHandle implMethod,
MethodType instantiatedMethodType)
throws LambdaConversionException {
AbstractValidatingLambdaMetafactory mf;
mf = new InnerClassLambdaMetafactory(caller, invokedType,
invokedName, samMethodType,
implMethod, instantiatedMethodType,
false, EMPTY_CLASS_ARRAY,
EMPTY_MT_ARRAY);
mf.validateMetafactoryArgs();
return mf.buildCallSite();
}
通過原始碼可以看出,metafactory方法通過InnerClassLambdaMetafactory類生成物件,並提供後續呼叫,在InnerClassLambdaMetafactory原始碼中可以看到,有提供開關是否dump生成的class檔案。
接下來我們通過設定啟動引數-Djdk.internal.lambda.dumpProxyClasses檢視中間物件,增加這個引數以後會生成LambdaTest$$Lambda$1類,
final class LambdaTest$$Lambda$1 implements Func {
private LambdaTest$$Lambda$1() {
}
@Hidden
public int add(int var1, int var2) {
return LambdaTest.lambda$main$0(var1, var2);
}
}
我們再看下上面這個類反編譯以後的情況
Classfile /Users/wangtongzhou/Documents/Java/learning/com/springboot2/learning/javabasic/java8/LambdaTest$$Lambda$1.class
Last modified 2020-7-11; size 437 bytes
MD5 checksum 729979930540708c60f4e71e63b69321
final class com.springboot2.learning.javabasic.java8.LambdaTest$$Lambda$1 implements com.springboot2.learning.javabasic.java8.Func
minor version: 0
major version: 52
flags: ACC_FINAL, ACC_SUPER, ACC_SYNTHETIC
Constant pool:
#1 = Utf8 com/springboot2/learning/javabasic/java8/LambdaTest$$Lambda$1
#2 = Class #1 // com/springboot2/learning/javabasic/java8/LambdaTest$$Lambda$1
#3 = Utf8 java/lang/Object
#4 = Class #3 // java/lang/Object
#5 = Utf8 com/springboot2/learning/javabasic/java8/Func
#6 = Class #5 // com/springboot2/learning/javabasic/java8/Func
#7 = Utf8 <init>
#8 = Utf8 ()V
#9 = NameAndType #7:#8 // "<init>":()V
#10 = Methodref #4.#9 // java/lang/Object."<init>":()V
#11 = Utf8 add
#12 = Utf8 (II)I
#13 = Utf8 Ljava/lang/invoke/LambdaForm$Hidden;
#14 = Utf8 com/springboot2/learning/javabasic/java8/LambdaTest
#15 = Class #14 // com/springboot2/learning/javabasic/java8/LambdaTest
#16 = Utf8 lambda$main$0
#17 = NameAndType #16:#12 // lambda$main$0:(II)I
#18 = Methodref #15.#17 // com/springboot2/learning/javabasic/java8/LambdaTest.lambda$main$0:(II)I
#19 = Utf8 Code
#20 = Utf8 RuntimeVisibleAnnotations
{
private com.springboot2.learning.javabasic.java8.LambdaTest$$Lambda$1();
descriptor: ()V
flags: ACC_PRIVATE
Code:
stack=1, locals=1, args_size=1
0: aload_0
1: invokespecial #10 // Method java/lang/Object."<init>":()V
4: return
public int add(int, int);
descriptor: (II)I
flags: ACC_PUBLIC
Code:
stack=2, locals=3, args_size=3
0: iload_1
1: iload_2
2: invokestatic #18 // Method com/springboot2/learning/javabasic/java8/LambdaTest.lambda$main$0:(II)I
5: ireturn
RuntimeVisibleAnnotations:
0: #13()
}
由此我們可以得出編譯以後的程式碼為:
public class LambdaTest {
public static void main(String[] args) {
Func func= LambdaTest$$Lambda$1();
System.out.println(func.add(1, 2));
}
private static int lambda$main$0(int x, int y) {
return x + y;
}
static final class LambdaTest$$Lambda$1 implements Func {
private LambdaTest$$Lambda$1() {
}
public int add(int x, inty) {
return LambdaTest.lambda$main$0(x,y);
}
}
}
總結下,Lambda底層就是通過一個靜態的內部類實現的;
結尾
歡迎大家點點關注,點點贊,感謝!