Java8新特性——從Lambda表示式到Stream流
Lambda表示式與Stream
文章目錄
Lambda表示式
基操
首先清楚一個概念,如果一個介面裡面只有一個抽象方法,那麼這個介面就是一個函式式介面。
我們可以使用@FunctionalInterface
修飾這個介面,被這個註解修飾的介面如果有多個抽象方法,那麼編譯是不會通過的。
例如:
package com.lambda;
@FunctionalInterface
public interface MyFunctionalInterface {
void method();
}
假設Demo類中的show方法如下:
package com.lambda;
public class Demo {
public static void show(MyFunctionalInterface mfi) {
mfi.method();
}
}
我們有三種寫法傳遞show方法的引數:
- 引數是一個繼承了MyFunctionalInterface的類的物件;
- 寫一個匿名內部類,裡面重寫MyFunctionalInterface的抽象方法;
- 使用Lambda表示式簡化匿名內部類的寫法;
package com.test;
import org.junit.Test;
import com.lambda.Demo;
import com.lambda.MyFunctionalInterface;
public class TestDemo {
@Test
public void testLambda() {
// 方法1
// Demo.show(new MyFunctionalInterfaceImpl());
// 方法2
Demo.show(new MyFunctionalInterface() {
@Override
public void method() {
System.out.println("這是匿名內部類的寫法");
}
});
// 方法3
Demo.show(() -> System.out.println("lambda方式的寫法"));
}
}
這裡舉兩個例子來感受lambda的簡潔:
@Test
public void testThread() {
//匿名內部類的寫法
new Thread(new Runnable() {
@Override
public void run() {
System.out.println(Thread.currentThread().getName());
}
}).start();
//Lambda寫法
new Thread(()->System.out.println(Thread.currentThread().getName())).start();
}
@Test
public void testComparator() {
String[] strs = {"asdfadf","asdfasdfasdf","fasdf","sdfghdsfghshsdfhsdfg"};
//匿名內部類寫法
Arrays.sort(strs,new Comparator<String>() {
@Override
public int compare(String o1, String o2) {
return o2.length() - o1.length();
}
});
System.out.println(Arrays.toString(strs));
//Lambda的寫法
Arrays.sort(strs,(s1,s2)->s1.length()-s2.length());
System.out.println(Arrays.toString(strs));
}
方法引用
如果已經有了現成的方法,有些Lambda表示式是不必要寫的,這時候我們就可以把lambda表示式換為方法引用。
舉個例子就知道了。
有如下函式式介面:
package com.lambda;
@FunctionalInterface
public interface Printer {
void print(String str);
}
有如下方法:
private void p(String s,Printer printer) {
printer.print(s);
}
方法引用:
@Test
public void testFFYY() {
p("測試lambda表示式", (s) -> System.out.println(s));
p("測試方法引用", System.out::println);
}
第一行是使用lambda表示式的方法,但是由於lambda的效果和System.out.println()一樣,我們可以直接使用方法引用。
常見的方法引用有以下幾種:
- 物件名::成員方法
- 類名::靜態方法
- this::成員方法
- super::成員方法
- 類名::new (返回該類的物件)
- 類名[]::new (返回該類的物件陣列)
四種常用的函式式介面
Supplier
用於生產一個指定型別的資料,原始碼如下:
package java.util.function;
@FunctionalInterface
public interface Supplier<T> {
/**
* Gets a result.
*
* @return a result
*/
T get();
}
測試案例:
@Test
public void testSupplier() {
Supplier<String> supplier = () -> "測試supplier";
System.out.println(supplier.get());
}
Consumer
用於消費一個指定型別的資料,原始碼如下:
package java.util.function;
import java.util.Objects;
@FunctionalInterface
public interface Consumer<T> {
/**
* Performs this operation on the given argument.
*
* @param t the input argument
*/
void accept(T t);
/**
* Returns a composed {@code Consumer} that performs, in sequence, this
* operation followed by the {@code after} operation. If performing either
* operation throws an exception, it is relayed to the caller of the
* composed operation. If performing this operation throws an exception,
* the {@code after} operation will not be performed.
*
* @param after the operation to perform after this operation
* @return a composed {@code Consumer} that performs in sequence this
* operation followed by the {@code after} operation
* @throws NullPointerException if {@code after} is null
*/
default Consumer<T> andThen(Consumer<? super T> after) {
Objects.requireNonNull(after);
return (T t) -> { accept(t); after.accept(t); };
}
}
測試案例:
@Test
public void testConsumer() {
Consumer<String> consumer = (str) -> System.out.println(str);
consumer.accept("測試consumer");
consumerAndThen("test andThen in Consumer",
str -> System.out.println(str.toUpperCase()),
str -> System.out.println(str.toLowerCase()));
}
private void consumerAndThen(String str,Consumer<String> c1,Consumer<String> c2) {
c1.andThen(c2).accept(str);
}
Predicate
用於判斷,返回值為boolean,原始碼如下:
package java.util.function;
import java.util.Objects;
@FunctionalInterface
public interface Predicate<T> {
/**
* Evaluates this predicate on the given argument.
*
* @param t the input argument
* @return {@code true} if the input argument matches the predicate,
* otherwise {@code false}
*/
boolean test(T t);
/**
* Returns a composed predicate that represents a short-circuiting logical
* AND of this predicate and another. When evaluating the composed
* predicate, if this predicate is {@code false}, then the {@code other}
* predicate is not evaluated.
*
* <p>Any exceptions thrown during evaluation of either predicate are relayed
* to the caller; if evaluation of this predicate throws an exception, the
* {@code other} predicate will not be evaluated.
*
* @param other a predicate that will be logically-ANDed with this
* predicate
* @return a composed predicate that represents the short-circuiting logical
* AND of this predicate and the {@code other} predicate
* @throws NullPointerException if other is null
*/
default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) && other.test(t);
}
/**
* Returns a predicate that represents the logical negation of this
* predicate.
*
* @return a predicate that represents the logical negation of this
* predicate
*/
default Predicate<T> negate() {
return (t) -> !test(t);
}
/**
* Returns a composed predicate that represents a short-circuiting logical
* OR of this predicate and another. When evaluating the composed
* predicate, if this predicate is {@code true}, then the {@code other}
* predicate is not evaluated.
*
* <p>Any exceptions thrown during evaluation of either predicate are relayed
* to the caller; if evaluation of this predicate throws an exception, the
* {@code other} predicate will not be evaluated.
*
* @param other a predicate that will be logically-ORed with this
* predicate
* @return a composed predicate that represents the short-circuiting logical
* OR of this predicate and the {@code other} predicate
* @throws NullPointerException if other is null
*/
default Predicate<T> or(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) || other.test(t);
}
/**
* Returns a predicate that tests if two arguments are equal according
* to {@link Objects#equals(Object, Object)}.
*
* @param <T> the type of arguments to the predicate
* @param targetRef the object reference with which to compare for equality,
* which may be {@code null}
* @return a predicate that tests if two arguments are equal according
* to {@link Objects#equals(Object, Object)}
*/
static <T> Predicate<T> isEqual(Object targetRef) {
return (null == targetRef)
? Objects::isNull
: object -> targetRef.equals(object);
}
}
測試案例:
@Test
public void testPredicate() {
Predicate<String> predicate = (str) -> str.length() > 5;
System.out.println(predicate.test("ohhhhhhhh"));
//還有一些與或非的寫法,不想寫了,感覺沒啥必要
}
Function
用於將一種資料型別轉換為另一種資料型別,原始碼如下:
package java.util.function;
import java.util.Objects;
@FunctionalInterface
public interface Function<T, R> {
/**
* Applies this function to the given argument.
*
* @param t the function argument
* @return the function result
*/
R apply(T t);
/**
* Returns a composed function that first applies the {@code before}
* function to its input, and then applies this function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of input to the {@code before} function, and to the
* composed function
* @param before the function to apply before this function is applied
* @return a composed function that first applies the {@code before}
* function and then applies this function
* @throws NullPointerException if before is null
*
* @see #andThen(Function)
*/
default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));
}
/**
* Returns a composed function that first applies this function to
* its input, and then applies the {@code after} function to the result.
* If evaluation of either function throws an exception, it is relayed to
* the caller of the composed function.
*
* @param <V> the type of output of the {@code after} function, and of the
* composed function
* @param after the function to apply after this function is applied
* @return a composed function that first applies this function and then
* applies the {@code after} function
* @throws NullPointerException if after is null
*
* @see #compose(Function)
*/
default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));
}
/**
* Returns a function that always returns its input argument.
*
* @param <T> the type of the input and output objects to the function
* @return a function that always returns its input argument
*/
static <T> Function<T, T> identity() {
return t -> t;
}
}
測試案例:
@Test
public void testFunction() {
Function<String, Integer> function = (str) -> Integer.valueOf(str) + 10;
System.out.println(function.apply("23"));
Function<Integer, String> function2 = (i) -> String.valueOf(i - 20);
String str = function.andThen(function2).apply("78");
System.out.println(str);
}
Stream
可分為終結操作和非終結操作,非終結操作完成後仍然返回一個流物件,支援鏈式呼叫。
終結操作主要有foreach和count。
基操
foreach
引數是一個Consumer;
@Test
public void testForEach() {
List<String> list = new ArrayList<String>();
list.add("甲");
list.add("乙");
list.add("丙");
list.add("丁");
list.stream().forEach((item) -> System.out.println(item));
}
filter
引數是一個Predicate;
@Test
public void testFilter() {
List<String> list = new ArrayList<String>();
list.add("aaa");
list.add("asdf");
list.add("dfsh");
list.add("asdfasd");
list.stream().filter(item -> item.length() < 5)
.filter(item -> item.startsWith("a"))
.forEach(item -> System.out.println(item));
}
map
引數是一個Function;
@Test
public void testMap() {
String[] arr = {"17","234","567","16","23","34","345"};
Stream.of(arr).map(item -> Integer.valueOf(item))
.filter(item -> item > 40)
.forEach(item -> System.out.println(item));
}
count
統計個數;
@Test
public void testCount() {
String[] arr = {"17","234","567","16","23","34","345"};
long count = Stream.of(arr).map(item -> Integer.valueOf(item))
.filter(item -> item > 40)
.count();
System.out.println(count);
}
limit
取流中前n個物件,引數為n;
@Test
public void testLimit() {
String[] arr = {"17","234","567","16","23","34","345"};
Stream.of(arr).limit(4).forEach(item -> System.out.println(item));
}
skip
跳過流中前n個物件,引數為n;
@Test
public void testSkip() {
String[] arr = {"17","234","567","16","23","34","345"};
Stream.of(arr).skip(4).forEach(item -> System.out.println(item));
}
concat
將兩個流合併成一個流,引數為兩個流;
@Test
public void testConcat() {
String[] arr = {"17","234","567","16","23","34","345"};
List<String> list = new ArrayList<String>();
list.add("aaa");
list.add("asdf");
list.add("dfsh");
list.add("asdfasd");
Stream.concat(Stream.of(arr), list.stream()).forEach(item -> System.out.println(item));
}
相關文章
- Java8新特性(1):Lambda表示式Java
- java8 新特性之Lambda 表示式Java
- Java8新特性(一)-Lambda表示式Java
- java8特性-lambda表示式Java
- java8新特性stream流Java
- java8的新特性之lambda表示式和方法引用Java
- 好程式設計師分享java8新特性之Lambda表示式程式設計師Java
- Java8 新特性 Stream流操作List集合 (二)Java
- Java8新特性 - LambdaJava
- 【Java8新特性】Lambda表示式基礎語法,都在這兒了!!Java
- Java8特性詳解 lambda表示式(一):使用篇Java
- JDK1.8新特性--Lambda表示式JDK
- jdk1.8新特性:Lambda表示式JDK
- .NET3.5新特性,Lambda表示式
- Java 8新特性(一):Lambda表示式Java
- JDK 1.8 新特性之Lambda表示式JDK
- Java8特性詳解 lambda表示式(二):流式處理中的lambdaJava
- Java8特性詳解 lambda表示式(三):原理篇Java
- ?Java8新特性之Lambda表示式,函式式介面,方法引用和default關鍵字Java函式
- Java8新特性系列-LambdaJava
- JDK1.8新特性之Lambda表示式JDK
- JDK新特性-Lambda表示式的神操作JDK
- JDK1.8新特性之Lambda表示式()->JDK
- java-反射,介面新特性,Lambda表示式Java反射
- Java8的Lambda表示式Java
- Java8新特性--Stream APIJavaAPI
- 【java8新特性】蘭姆達表示式Java
- JDK1.8的新特性之Lambda表示式JDK
- Java8中的Lambda表示式Java
- JDK新特性--Stream流JDK
- Java8 新語法習慣 (級聯 lambda 表示式)Java
- jdk1.8 新特性之 如何寫lambda表示式JDK
- java8學習:lambda表示式(2)Java
- java8學習:lambda表示式(1)Java
- Java8新特性探索之Stream介面Java
- Java8 Lambda 之 Collection StreamJava
- Java8 Lambda表示式、Optional類淺析Java
- java8新特性之函式式介面、lambda表示式、介面的預設方法、方法和建構函式的引用Java函式