前面介紹了事件源(EventSource)和叢集(cluster),現在到了討論CQRS的時候了。CQRS即讀寫分離模式,由獨立的寫方程式和讀方程式組成,具體原理在以前的部落格裡介紹過了。akka-typed應該自然支援CQRS模式,最起碼本身提供了對寫方程式設計的支援,這點從EventSourcedBehavior 可以知道。akka-typed提供了新的EventSourcedBehavior-Actor,極大方便了對persistentActor的應用開發,但同時也給程式設計者造成了一些限制。如手工改變狀態會更困難了、EventSourcedBehavior不支援多層式的persist,也就是說通過persist某些特定的event然後在event-handler程式裡進行狀態處理是不可能的了。我這裡有個例子,是個購物車應用:當完成支付後需要取個快照(snapshot),下面是這個snapshot的程式碼:
snapshotWhen {
(state,evt,seqNr) => CommandHandler.takeSnapshot(state,evt,seqNr)
}
...
def takeSnapshot(state: Voucher, evt: Events.Action, lstSeqNr: Long)(implicit pid: PID) = {
if (evt.isInstanceOf[Events.PaymentMade]
|| evt.isInstanceOf[Events.VoidVoucher.type]
|| evt.isInstanceOf[Events.SuspVoucher.type])
if (state.items.isEmpty) {
log.step(s"#${state.header.num} taking snapshot at [$lstSeqNr] ...")
true
} else
false
else
false
}
判斷event型別是沒有問題的,因為正是當前的事件,但另一個條件是購物車必須是清空了的。這個有點為難,因為這個狀態要依賴這幾個event運算的結果才能確定,也就是下一步,但確定結果又需要對購物車內容進行計算,好像是個死迴圈。在akka-classic裡我們可以在判斷了event運算結果後,如果需要改變狀態就再persist一個特殊的event,然後在這個event的handler進行狀態處理。沒辦法,EventSourcedBehavior不支援多層persist,只有這樣做:
case PaymentMade(acct, dpt, num, ref,amount) => ... writerInternal.lastVoucher = Voucher(vchs, vItems) endVoucher(Voucher(vchs,vItems),TXNTYPE.sales) Voucher(vchs.nextVoucher, List()) ...
我只能先吧當前狀態儲存下來、進行結單運算、然後清空購物車,這樣snapshot就可以順利進行了。
好了,akka的讀方程式設計是通過PersistentQuery實現的。reader的作用就是把event從資料庫讀出來後再恢復成具體的資料格式。我們從reader的呼叫瞭解一下這個應用裡reader的實現細節:
val readerShard = writerInternal.optSharding.get
val readerRef = readerShard.entityRefFor(POSReader.EntityKey, s"$pid.shopId:$pid.posId")
readerRef ! Messages.PerformRead(pid.shopid, pid.posid,writerInternal.lastVoucher.header.num,writerInternal.lastVoucher.header.opr,bseq,eseq,txntype,writerInternal.expurl,writerInternal.expacct,writerInternal.exppass)
可以看到這個reader是一個叢集分片,sharding-entity。想法是每單完成購買後發個訊息給一個entity、這個entity再完成reader功能後自動終止,立即釋放出佔用的資源。reader-actor的定義如下:
object POSReader extends LogSupport {
val EntityKey: EntityTypeKey[Command] = EntityTypeKey[Command]("POSReader")
def apply(nodeAddress: String, trace: Boolean): Behavior[Command] = {
log.stepOn = trace
implicit var pid: PID = PID("","")
Behaviors.supervise(
Behaviors.setup[Command] { ctx =>
Behaviors.withTimers { timer =>
implicit val ec = ctx.executionContext
Behaviors.receiveMessage {
case PerformRead(shopid, posid, vchnum, opr, bseq, eseq, txntype, xurl, xacct, xpass) =>
pid = PID(shopid, posid)
log.step(s"POSReader: PerformRead($shopid,$posid,$vchnum,$opr,$bseq,$eseq,$txntype,$xurl,$xacct,$xpass)")(PID(shopid, posid))
val futReadSaveNExport = for {
txnitems <- ActionReader.readActions(ctx, vchnum, opr, bseq, eseq, trace, nodeAddress, shopid, posid, txntype)
_ <- ExportTxns.exportTxns(xurl, xacct, xpass, vchnum, txntype == Events.TXNTYPE.suspend,
{ if(txntype == Events.TXNTYPE.voidall)
txnitems.map (_.copy(txntype=Events.TXNTYPE.voidall))
else txnitems },
trace)(ctx.system.toClassic, pid)
} yield ()
ctx.pipeToSelf(futReadSaveNExport) {
case Success(_) => {
timer.startSingleTimer(ReaderFinish(shopid, posid, vchnum), readInterval.seconds)
StopReader
}
case Failure(err) =>
log.error(s"POSReader: Error: ${err.getMessage}")
timer.startSingleTimer(ReaderFinish(shopid, posid, vchnum), readInterval.seconds)
StopReader
}
Behaviors.same
case StopReader =>
Behaviors.same
case ReaderFinish(shopid, posid, vchnum) =>
Behaviors.stopped(
() => log.step(s"POSReader: {$shopid,$posid} finish reading voucher#$vchnum and stopped")(PID(shopid, posid))
)
}
}
}
).onFailure(SupervisorStrategy.restart)
}
reader就是一個普通的actor。值得注意的是讀方程式可能是一個龐大複雜的程式,肯定需要分割成多個模組,所以我們可以按照流程順序進行模組功能切分:這樣下面的模組可能會需要上面模組產生的結果才能繼續。記住,在actor中絕對避免阻塞執行緒,所有的模組都返回Future, 然後用for-yield串起來。上面我們用了ctx.pipeToSelf 在Future運算完成後傳送ReaderFinish訊息給自己,通知自己停止。
在這個例子裡我們把reader任務分成:
1、從資料庫讀取事件
2、事件重演一次產生狀態資料(購物車內容)
3、將形成的購物車內容作為交易單據專案存入資料庫
4、向使用者提供的restapi輸出交易資料
event讀取是通過cassandra-persistence-plugin實現的:
val query =
PersistenceQuery(classicSystem).readJournalFor[CassandraReadJournal](CassandraReadJournal.Identifier)
// issue query to journal
val source: Source[EventEnvelope, NotUsed] =
query.currentEventsByPersistenceId(s"${pid.shopid}:${pid.posid}", startSeq, endSeq)
// materialize stream, consuming events
val readActions: Future[List[Any]] = source.runFold(List[Any]()) { (lstAny, evl) => evl.event :: lstAny }
這部分比較簡單:定義一個PersistenceQuery,用它產生一個Source,然後run這個Source獲取Future[List[Any]]。
重演事件產生交易資料:
def buildVoucher(actions: List[Any]): List[TxnItem] = {
log.step(s"POSReader: read actions: $actions")
val (voidtxns,onlytxns) = actions.asInstanceOf[Seq[Action]].pickOut(_.isInstanceOf[Voided])
val listOfActions = onlytxns.reverse zip (LazyList from 1) //zipWithIndex
listOfActions.foreach { case (txn,idx) =>
txn.asInstanceOf[Action] match {
case Voided(_) =>
case ti@_ =>
curTxnItem = EventHandlers.buildTxnItem(ti.asInstanceOf[Action],vchState).copy(opr=cshr)
if(voidtxns.exists(a => a.asInstanceOf[Voided].seq == idx)) {
curTxnItem = curTxnItem.copy(txntype = TXNTYPE.voided, opr=cshr)
log.step(s"POSReader: voided txnitem: $curTxnItem")
}
val vch = EventHandlers.updateState(ti.asInstanceOf[Action],vchState,vchItems,curTxnItem,true)
vchState = vch.header
vchItems = vch.txnItems
log.step(s"POSReader: built txnitem: ${vchItems.txnitems.head}")
}
}
log.step(s"POSReader: voucher built with state: $vchState, items: ${vchItems.txnitems}")
vchItems.txnitems
}
重演List[Event],產生了List[TxnItem]。
向資料庫裡寫List[TxnItem]:
def writeTxnsToDB(vchnum: Int, txntype: Int, bseq: Long, eseq: Long, txns: List[TxnItem])(
implicit system: akka.actor.ActorSystem, session: CassandraSession, pid: PID): Future[Seq[TxnItem]] = ???
注意返回結果型別Future[Seq[TxnItem]]。我們用for-yield把這幾個動作串起來:
val txnitems: Future[List[Events.TxnItem]] = for {
lst1 <- readActions //read list from Source
lstTxns <- if (lst1.length < (endSeq -startSeq)) //if imcomplete list read again
readActions
else FastFuture.successful(lst1)
items <- FastFuture.successful( buildVoucher(lstTxns) )
_ <- JournalTxns.writeTxnsToDB(vchnum,txntype,startSeq,endSeq,items)
_ <- session.close(ec)
} yield items
注意返回結果型別Future[Seq[TxnItem]]。我們用for-yield把這幾個動作串起來:
val txnitems: Future[List[Events.TxnItem]] = for {
lst1 <- readActions //read list from Source
lstTxns <- if (lst1.length < (endSeq -startSeq)) //if imcomplete list read again
readActions
else FastFuture.successful(lst1)
items <- FastFuture.successful( buildVoucher(lstTxns) )
_ <- JournalTxns.writeTxnsToDB(vchnum,txntype,startSeq,endSeq,items)
_ <- session.close(ec)
} yield items
注意:這個for返回的Future[List[TxnItem]],是提供給restapi輸出功能的。在那裡List[TxnItem]會被轉換成json作為post的包嵌資料。
現在所有子任務的返回結果型別都是Future了。我們可以再用for來把它們串起來:
val futReadSaveNExport = for {
txnitems <- ActionReader.readActions(ctx, vchnum, opr, bseq, eseq, trace, nodeAddress, shopid, posid, txntype)
_ <- ExportTxns.exportTxns(xurl, xacct, xpass, vchnum, txntype == Events.TXNTYPE.suspend,
{ if(txntype == Events.TXNTYPE.voidall)
txnitems.map (_.copy(txntype=Events.TXNTYPE.voidall))
else txnitems },
trace)(ctx.system.toClassic, pid)
} yield ()
說到EventSourcedBehavior,因為用了cassandra-plugin,忽然想起配置檔案裡新舊有很大區別。現在這個application.conf是這樣的:
akka {
loglevel = INFO
actor {
provider = cluster
serialization-bindings {
"com.datatech.pos.cloud.CborSerializable" = jackson-cbor
}
}
remote {
artery {
canonical.hostname = "192.168.11.189"
canonical.port = 0
}
}
cluster {
seed-nodes = [
"akka://cloud-pos-server@192.168.11.189:2551"]
sharding {
passivate-idle-entity-after = 5 m
}
}
# use Cassandra to store both snapshots and the events of the persistent actors
persistence {
journal.plugin = "akka.persistence.cassandra.journal"
snapshot-store.plugin = "akka.persistence.cassandra.snapshot"
}
}
akka.persistence.cassandra {
# don't use autocreate in production
journal.keyspace = "poc2g"
journal.keyspace-autocreate = on
journal.tables-autocreate = on
snapshot.keyspace = "poc2g_snapshot"
snapshot.keyspace-autocreate = on
snapshot.tables-autocreate = on
}
datastax-java-driver {
basic.contact-points = ["192.168.11.189:9042"]
basic.load-balancing-policy.local-datacenter = "datacenter1"
}
akka.persitence.cassandra段落裡可以定義keyspace名稱,這樣新舊版本應用可以共用一個cassandra,同時線上。