Python程式碼如下
import pandas as pd # 讀取資料 data = pd.read_csv('data_row.csv') # 檢查異常值 def detect_outliers(data): outliers = [] for col in data.columns: q1 = data[col].quantile(0.25) q3 = data[col].quantile(0.75) iqr = q3 - q1 lower_bound = q1 - 1.5 * iqr upper_bound = q3 + 1.5 * iqr outliers.extend(data[(data[col] < lower_bound) | (data[col] > upper_bound)].index) return list(set(outliers)) outliers = detect_outliers(data) print("異常資料數量:", len(outliers)) # 處理異常值 data.drop(outliers, inplace=True) # 儲存清洗後的資料 data.to_csv('clean_data_row.csv', index=False)
下面我們修改成C#程式碼
建立控制檯程式,Nuget安裝 CsvHelper 和 pythonnet
public class Program { const string PathToPythonDir = "D:\\Python311"; const string DllOfPython = "python311.dll"; static void Main(string[] args) { // 資料清洗 CleanData(); }
/// <summary> /// 資料清洗 /// </summary> static void CleanData() { var originDatas = ReadCsvWithCsvHelper("data_row.csv"); var outliers = DetectOutliers(originDatas); var outlierHashset = new HashSet<int>(outliers); // 清洗過後的資料 var cleanDatas = originDatas.Where((r, index) => !outlierHashset.Contains(index)).ToList(); try { Runtime.PythonDLL = Path.Combine(PathToPythonDir, DllOfPython); PythonEngine.Initialize(); using (Py.GIL()) { dynamic pd = Py.Import("pandas"); dynamic np = Py.Import("numpy"); dynamic plt = Py.Import("matplotlib.pyplot"); dynamic fft = Py.Import("scipy.fftpack"); dynamic oData = np.array(originDatas.ToArray()); int oDataLength = oData.__len__(); dynamic data = np.array(cleanDatas.ToArray()); int dataLength = data.__len__(); // 繪製原始資料圖和清洗後資料圖 plt.figure(figsize: new dynamic[] { 12, 6 }); // 原始資料圖 plt.subplot(1, 2, 1); plt.plot(np.arange(oDataLength), oData); plt.title("Original Datas"); // 清洗後資料圖 plt.subplot(1, 2, 2); plt.plot(np.arange(dataLength), data); plt.title("Clean Datas"); // 佈局調整,防止重疊 plt.tight_layout(); // 顯示圖表 plt.show(); } } catch (Exception e) { Console.WriteLine("報錯了:" + e.Message + "\r\n" + e.StackTrace); } } /// <summary> /// 檢測異常值 /// </summary> /// <param name="datas">原始資料集合</param> /// <returns>返回異常值在集合中的索引</returns> static List<int> DetectOutliers(List<double[]> datas) { List<int> outliers = new List<int>(); var first = datas.First(); for (int i = 0; i < first.Length; i++) { var values = datas.AsEnumerable().Select((row, index) => Tuple.Create(row[i], index)).ToArray(); double q1 = Enumerable.OrderBy(values, x => x.Item1).ElementAt((int)(values.Length * 0.25)).Item1; double q3 = Enumerable.OrderBy(values, x => x.Item1).ElementAt((int)(values.Length * 0.75)).Item1; double iqr = q3 - q1; double lowerBound = q1 - 1.5 * iqr; double upperBound = q3 + 1.5 * iqr; outliers.AddRange(values.AsEnumerable() .Where(row => row.Item1 < lowerBound || row.Item1 > upperBound) .Select(row => row.Item2)); } return outliers.Distinct().ToList(); } /// <summary> /// 讀取CSV資料 /// </summary> /// <param name="filePath">檔案路徑</param> /// <returns>檔案中資料集合,都是double型別</returns> static List<double[]> ReadCsvWithCsvHelper(string filePath) { using (var reader = new StreamReader(filePath)) using (var csv = new CsvReader(reader, CultureInfo.InvariantCulture)) { var result = new List<double[]>(); // 如果你的CSV檔案有標題行,可以呼叫ReadHeader來讀取它們 csv.Read(); csv.ReadHeader(); while (csv.Read()) { result.Add(new double[] { csv.GetField<double>(0), csv.GetField<double>(1), csv.GetField<double>(2), }); } return result; } } }
以下是執行後結果,左邊是原始資料折線圖,右邊是清洗後資料折線圖
原始碼:https://gitee.com/Karl_Albright/csharp-demo/tree/master/PythonnetDemo/PythonnetClearData
抽稀演算法
def down_sampling(sig,factor=2, axis=0): ''' 降取樣 Inputs: sig --- numpy array, 訊號資料陣列 factor --- int, 降取樣倍率 axis --- int, 沿著哪個軸進行降取樣 ''' Temp=[':']*sig.ndim Temp[axis]='::'+str(factor) return eval('sig['+','.join(Temp)+']')
/// <summary> /// 降取樣,其實就是抽稀演算法 /// </summary> static List<double[]> DownSampling(int factor = 2, int axis = 0) { if (axis != 0 && axis != 1) throw new ArgumentException("Axis must be 0 or 1 for a 2D array."); var datas = ReadCsvWithCsvHelper("clean_data_row3.csv"); int dim0 = datas.Count; var first = datas.First(); int dim1 = first.Length; var result = new List<double[]>(); if (axis == 0) { var xAxis = dim0 / factor; var yAxis = dim1; for (int i = 0; i < xAxis; i++) { result.Add(datas[i * factor]); } } else if (axis == 1) { var xAxis = dim0; var yAxis = dim1 / factor; var item = new double[yAxis]; for (int i = 0; i < xAxis; i++) { var deviceData = datas[i]; for (int j = 0; j < yAxis; j++) { item[j] = deviceData[j * factor]; } result.Add(item); } } return result; }
原始碼:https://gitee.com/Karl_Albright/csharp-demo/tree/master/PythonnetDemo/PythonnetClearData