面試題:MySQL索引為什麼用B+樹?

知否專欄發表於2019-05-22

面試題:MySQL索引為什麼用B+樹?

前言

講到索引,第一反應肯定是能提高查詢效率。例如書的目錄,想要查詢某一章節,會先從目錄中定位。如果沒有目錄,那麼就需要將所有內容都看一遍才能找到。

索引的設計對程式的效能至關重要,若索引太少,對查詢效能受影響;而如果索引太多,則會影響增/改/刪等的效能。

知識點

MySQL中一般支援以下幾種常見的索引:

  • B+樹索引
  • 全文索引
  • 雜湊索引

我們今天重點來講下B+樹索引,以及為什麼要用B+樹來作為索引的資料結構。

B+樹索引並不能直接找到具體的行,只是找到被查詢行所在的頁,然後DB通過把整頁讀入記憶體,再在記憶體中查詢。

重溫資料結構

1.1 雜湊結構

如有 3、1、2、10、9、0、4、6這8個資料,建立如圖1-1所示雜湊索引。

  • 直接查詢:現在要從8個數中查詢6這條記錄,只需要計算6的雜湊值,便可快速定位記錄,時間複雜度為O(1)。

  • 範圍查詢:如果要進行範圍查詢(大於4的資料),那這個索引就完全沒用了。

面試題:MySQL索引為什麼用B+樹?
圖1-1 雜湊索引

1.2 二叉樹查詢樹

二叉樹是一種經典的資料結構,要求左子樹小於根節點,右子樹大於根節點。

如有 3、1、2、10、9、0、4、6這8個資料,建立如圖1-2所示二分查詢樹。

  • 直接查詢:假設查詢鍵值為6的記錄,先找到根4,4<6,因此查詢4的右子樹,找到9;9大於6,因此查詢9的左子樹;一共查詢3次。但如果順序查詢,則需要查詢8次(位於最後)。

  • 範圍查詢:如果需要查詢大於4的資料,則遍歷4的右子樹就行了。

面試題:MySQL索引為什麼用B+樹?
圖1-2 二叉查詢樹

1.3 平衡二叉樹(AVL樹)

按照二叉查詢樹的定義,它是可以任意的構造,同樣是這些數字,可以按照圖1-3-1的方式來建立二叉查詢樹。同樣查詢資料6,需要查詢5次。

面試題:MySQL索引為什麼用B+樹?
圖1-3-1 效能較差的二叉查詢樹

因此為了最大效能地構造一個二叉查詢樹,需要它是平衡的,即平衡二叉樹。

平衡二叉樹定義:首先符合二叉查詢樹的定義,另外任何節點的兩個子樹高度最大差為1。

平衡二叉樹的查詢速度是很快的,但是有缺點:

  1. 維護樹的代價是非常大,在進行插入或更新時,經常會需要多次左旋或右旋來維持平衡。如圖1-3-2所示
  2. 資料量多的時候,樹會很高,需要多次I/O操作。
  3. 在進行範圍查詢時,假設查詢>=3,先找到3,然後需要查詢到3的父節點,然後遍歷父節點的右子樹。

面試題:MySQL索引為什麼用B+樹?
圖1-3-2 平衡二叉樹AVL

1.4 B+ 樹

在B+樹中,所有記錄節點存放在葉子節點上,且是順序存放,由各葉子節點指標進行連線。如果從最左邊的葉子節點開始順序遍歷,能得到所有鍵值的順序排序。

如有 3、1、2、10、9、0、4、6這8個資料,可建立如圖1-4-1所示高度為2的B+樹。

面試題:MySQL索引為什麼用B+樹?
圖1-4-1 高度為2的B+樹

在進行更新時,B+樹同樣需要類似二叉樹的旋轉操作。舉例,假設新增一個7,那可以直接填充到4、6的後面。如果再新增8,那麼就需要進行旋轉了,感受下面的B+樹旋轉過程。

面試題:MySQL索引為什麼用B+樹?
圖1-4-2 高度為3的B+樹

採用B+樹的索引結構優點:

  1. B+樹的高度一般為2-4層,所以查詢記錄時最多隻需要2-4次IO,相對二叉平衡樹已經大大降低了。
  2. 範圍查詢時,能通過葉子節點的指標獲取資料。例如查詢大於等於3的資料,當在葉子節點中查到3時,通過3的尾指標便能獲取所有資料,而不需要再像二叉樹一樣再獲取到3的父節點。

面試題:MySQL索引為什麼用B+樹?

未完待續…

如果想要實時關注更新的文章以及分享的乾貨,可以關注我的公眾號

面試題:MySQL索引為什麼用B+樹?

相關文章