2018 China Collegiate Programming Contest Final (CCPC-Final 2018)
A. Mischievous Problem Setter
Description:
Mr. Sheep is participating in a programming contest. Mr. Panda, the mischievous problem setter gives him some “hints” on the difficulty level of the problems. As problem solving time matters for contestants who solve the same number of problems, it’s always wise to solve from easiest to hardest problems.
Unfortunately, one man’s meat is another man’s poison. People can have different opinions on the difficulty level of the problems. Especially for Mr. Panda, who always underestimates the difficulty level for hard problems, as all problems are considered easy for him…
There are N problems in the contest and the contest will last for M minutes. The problem has an estimated difficulty by Mr. Panda, and it costs Mr. Sheep minutes to solve. Mr.Sheep always solves problems in increasing order of difficulty (i.e., from the easiest problem to the hardest problem estimated by Mr. Panda). How many problems will Mr. Sheep solve at the end of the contest?
Input:
The first line of the input gives the number of test cases, . T test cases follow.
For each test case, the first line contains two integers and , where is the number of problems in the contest and is the length of the contest in minutes.
The next line contains distinct integers representing the difficulty levels estimated by the problem setter.
The following line contains integers representing the actual time (in minutes) it costs for Mr. Sheep to solve the problems.
Output:
For each test case, output one line containing “Case x: y”, where x is the test case number (starting from
- and y is the number of problems solved by Mr. Sheep after the contest ends.
Sample Input:
2
5 120
5 10 20 35 100
10 20 35 100 100000
13 300
52 55 82 11 62 79 38 8 58 28 1 70 32
27 62 45 77 22 69 34 43 21 43 85 22 36
Sample Output:
Case 1: 3
Case 2: 5
題目連結
道題目每個題目有兩個屬性:難度,解決用時,只能按照難度遞增順序做題,求 分鐘內解體數量
按照難度排序,由於不能跳題,所以直接對每道題目用時求和判斷即可
AC程式碼:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
int t; cin >> t;
for (int Case = 1; Case <= t; ++Case) {
int n, m; cin >> n >> m;
vector<pair<ll, ll>> arr(n);
for (auto &it : arr) cin >> it.first;
for (auto &it : arr) cin >> it.second;
sort(arr.begin(), arr.end(), [&](pair<ll, ll> k1, pair<ll, ll> k2) {return k1.first < k2.first;});
ll sum = 0, ans = 0;
for (auto &it : arr) {
if (sum + it.second <= m) {
sum += it.second;
ans++;
}
else break;
}
cout << "Case " << Case << ": " << ans << endl;
}
return 0;
}
G. Pastoral Life in Stardew Valley
Description:
Mr. Panda and Mrs. Panda is bored of the hustle and bustle of city life. They decide to make a change. They drop everything they belong to and move to a place where they can find real connections with people and nature. Here in Stardew Valley, they start their life as farmers. They are now embarking on tasks of reclaiming wastelands, sowing seeds, and planting trees.
They are now looking for a rectangle area from the reclaimed wasteland to cultivate their first crop. To prevent crops being damaged by annoying crows, they place several scarecrows inside this rectangle area. The scarecrows occupy a rectangle area that is surrounded by the crops. The wasteland is of rows and columns. They wonder how many different ways to pick a rectangle area and place crops and scarecrows inside the rectangle. As the number can be large, return the answer modulo .
Input:
The first line of input gives the number of test cases (). test cases follow. Each test case starts with a line consisting of two integers , (), the number of rows and columns of the wasteland.
Output
For each test case, output one line containing “Case x: y”, where x is the test case number (starting from ) and y is the number of different ways to place the crops and scarecrows, modulo .
Sample Input:
3
2 3
3 3
4 4
Sample Output:
Case 1: 0
Case 2: 1
Case 3: 25
題目連結
在 的棋盤上選擇兩個長方形使一個長方形完全包含另一個長方形,求方案數
先考慮選擇兩個長方形的寬
例如在 的棋盤中選擇兩個長方形就有 種選法
例如在如圖 的棋盤上選則兩個長方形就會選擇四個方格來分別代表大小長方形的左右邊界,其中最左最右的兩個方格(如圖 方格)代表大長方形的邊界,中間的兩個方格(如圖 方格)代表小長方形的邊界,所以這樣選法就為 (在 個方格種選出四個方格),還有另一種小長方形只佔一個方格的情況,即只用選出三個方格中間的方格代表小長方形,這種情況共有 種,這樣就可以把大小長方形的寬統計完了
大小長方形高的統計方法同理,最後把兩個結果相乘即為最終結果
注意特判 和 的情況
AC程式碼:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 5;
const int mod = 1e9 + 7;
ll C[maxn][5];
void Init() {
C[0][0] = 1;
for (int i = 1; i < maxn; ++i) {
C[i][0] = 1;
for (int j = 1; j < 5; ++j) C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mod;
}
}
int main() {
ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
Init();
int t; cin >> t;
for (int Case = 1; Case <= t; ++Case) {
int n, m; cin >> n >> m;
if (n < 3 || m < 3) {
cout << "Case " << Case << ": " << 0 << endl;
continue;
}
cout << "Case " << Case << ": " << ((C[n][3] + C[n][4]) % mod) * ((C[m][3] + C[m][4]) % mod) % mod << endl;
}
return 0;
}
I. Cockroaches
Description:
There are cockroaches in the field. Cockroach is located at coordinate . No two cockroaches are located at the same spot. Boss Luo has a powerful pesticide that can instantly kill all cockroaches on the horizontal and vertical line of the spot where it is used. i.e. cockroaches with either the same x coordinate or y coordinate as the pesticide spot will be killed.
Boss Luo wonders how many cockroaches can be killed at most when the pesticide is used in one spot. He is also interested in the number of different subsets of the annihilated cockroaches when the pesticide kills most cockroaches.
Input:
The first line of the input gives the number of test cases, (). test cases follow.
For each test case, the first line contains an integers (), the number of cockroaches.
The next lines each contains two integers and (), describing the coordinates of the cockroaches.
For at least 80 test cases, it is guaranteed that .
Output
For each test case, output one line containing “Case x: y z”, where x is the test case number (starting from ), y is the maximum number of cockroaches that can be killed with pesticide applied on one spot, and z is the number of different subsets of the annihilated cockroaches when the pesticide kills most cockroaches.
Sample Input:
2
5
1 2
1 3
2 3
4 5
6 7
3
1 2
2 3
3 1
Sample Output:
Case 1: 3 5
Case 2: 2 3
題目連結
在平面直角座標系上有 個蟑螂(編號為 ),現你可以指定座標系上的任意一個點,和其橫座標或縱座標相同的蟑螂全部被消滅,求出消滅最多蟑螂的集合種類數
先特判 個點和 個點橫縱座標都互不相同的情況
之後消滅最多蟑螂有兩種情況(設同一橫座標下最多點數為 ,同一縱座標下最多點數為 )
- 所在的 與 所在的 的交點上有 個點其中一點
- 所在的 與 所在的 的交點上無 個點其中一點
統計兩種情況的數量即可
AC程式碼:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main() {
ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr);
ll t; cin >> t;
for (ll Case = 1; Case <= t; ++Case) {
ll n; cin >> n;
pair<ll, ll> ans;
vector<pair<ll, ll>> p(n);
map<ll, ll> cnt_x, cnt_y;
ll best_x = 0, best_y = 0;
for (auto &it : p) {
cin >> it.first >> it.second;
best_x = max(best_x, ++cnt_x[it.first]);
best_y = max(best_y, ++cnt_y[it.second]);
}
if (cnt_x.size() == 1 || cnt_y.size() == 1) {
cout << "Case " << Case << ": " << n << " " << 1 << endl;
continue;
}
if (best_x == 1 && best_y == 1) {
cout << "Case " << Case << ": " << 2 << " " << n * (n - 1) / 2 << endl;
continue;
}
ll cnt_x_1 = 0, cnt_x_2 = 0, cnt_y_1 = 0, cnt_y_2 = 0;
for (auto &it : cnt_x) {
if (it.second == best_x) cnt_x_1++;
else if (it.second == best_x - 1) cnt_x_2++;
}
for (auto &it : cnt_y) {
if (it.second == best_y) cnt_y_1++;
else if (it.second == best_y - 1) cnt_y_2++;
}
ll best = best_x + best_y;
ll cnt_1 = cnt_x_1 * cnt_y_1, cnt_2 = cnt_x_1 * cnt_y_2 + cnt_x_2 * cnt_y_1;
for (auto &it : p) {
int cnt = cnt_x[it.first] + cnt_y[it.second];
if (cnt == best) {
cnt_1--;
cnt_2++;
}
else if (cnt == best - 1) cnt_2--;
}
if (cnt_1 > 0) cout << "Case " << Case << ": " << best << " " << cnt_1 << endl;
else cout << "Case " << Case << ": " << best - 1 << " " << cnt_2 << endl;
}
return 0;
}
L. Ultra Weak Goldbach’s Conjecture
Description:
In number theory, Goldbach’s conjecture states that every even integer greater than is the sum of two prime numbers. A weaker version of this conjecture states that every odd number greater than is the sum of three prime numbers.
Here is an ultra weak version of Goldbach’s conjecture: every integer greater than is the sum of prime numbers. Can you help to verify or disprove this conjecture?
Input:
The first line of the input gives the number of test cases, (). test cases follow.
Each test case contains one integer ().
Output
For each test case, output “Case x:” first, where x is the test case number (starting from ). If the solution exist, output six prime numbers separated by spaces; otherwise output “IMPOSSIBLE” (quotes for clarity) when the solution does not exist. When the solution exists, any valid solution is acceptable.
Sample Input:
5
6
13
200
570
680
Sample Output:
Case 1: IMPOSSIBLE
Case 2: 2 2 2 2 2 3
Case 3: 43 29 31 29 31 37
Case 4: 97 101 103 107 101 61
Case 5: 137 137 107 113 89 97
題目連結
將一個數 分解為 個素數之和
首先特判小於等於 的數肯定無法分解(題目也說了)
對於每個大於 的 進行分解,有兩種情況
- 若 為偶數,則其可以分為 和 ,由於 為偶數,則 也一定為偶數,所以 一定可以分解為兩個素數之和
- 若 為奇數,則其可以分為 和 ,由於 為奇數,則 一定為偶數,所以 一定可以分解為兩個素數之和
現在只用考慮將一個偶數分解為兩個素數之和
那麼對素數表中的素數暴力列舉判斷剩下的 減去素數之後是否為素數就可以了
由於 的資料範圍較大,所以判定素數的時候就不能用素數表,我這裡直接暴力判斷就過了
如果會 的話還是碼上比較保險
AC程式碼:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e8 + 5;
typedef long long ll;
bool isPrime[maxn];
vector<int> prime;
bool _isPrime(ll key) {
for (ll i = 2; i * i <= key; ++i) {
if (key % i == 0) return false;
}
return true;
}
void _sieve() {
memset(isPrime, true, sizeof(isPrime));
for (ll i = 2; i < maxn; ++i) {
if (isPrime[i]) {
prime.push_back(i);
for (ll j = i * i; j < maxn; j += i) isPrime[j] = false;
}
}
}
void _solve(ll x) {
for (auto &p : prime) {
if (_isPrime(x - p)) {
cout << p << " " << x - p << endl;
break;
}
}
}
int main() {
_sieve();
int t; cin >> t;
for (int Case = 1; Case <= t; ++Case) {
ll n; cin >> n;
cout << "Case " << Case << ": ";
if (n < 12) {
cout << "IMPOSSIBLE" << endl;
continue;
}
if (n & 1) {
cout << 2 << " " << 3 << " " << 2 << " " << 2 << " ";
n -= 9;
}
else {
cout << 2 << " " << 2 << " " << 2 << " " << 2 << " ";
n -= 8;
}
_solve(n);
}
return 0;
}
相關文章
- 2018-2019 ACM-ICPC, China Multi-Provincial Collegiate Programming ContestACM
- 2020 China Collegiate Programming Contest Qinhuangdao Site
- 2022 China Collegiate Programming Contest (CCPC) Guilin SiteGUI
- The 2019 China Collegiate Programming Contest Harbin Site F. Fixing Banners
- 2022 China Collegiate Programming Contest (CCPC) Mianyang Onsite E Hammer to Fall
- 2024 Jiangsu Collegiate Programming Contest
- The 2024 CCPC Shandong Invitational Contest and Provincial Collegiate Programming Contest
- North American Invitational Programming Contest 2018
- 2022 International Collegiate Programming Contest, Jinan SiteNaN
- The 11th Zhejiang Provincial Collegiate Programming Contest
- The 2022 ICPC Polish Collegiate Programming Contest (AMPPZ 2022)
- The 8th Hebei Collegiate Programming Contest: F - 3 Split
- 2021 Hubei Provincial Collegiate Programming Contest/2021湖北省賽 題解
- JOI 2018 Final
- 2018 BACS Regional Programming Contest C. BACS, Scoundrel Shopkeeper and Contiguous Sequence (模擬)
- 2023 Hubei Provincial Collegiate Programming Contest題解 C F H I J K M
- 2024年3月20日 VP[The 13th Shandong ICPC Provincial Collegiate Programming Contest]
- 2018 Multi-University Training Contest 3 - HDU ContestAI
- DevFest 2018 China 全國聯動dev
- Mynavi Programming Contest 2021(AtCoder Beginner Contest 201)
- AISing Programming Contest 2021(AtCoder Beginner Contest 202)AI
- Petrozavodsk Winter-2018. Jagiellonian U Contest
- Helvetic Coding Contest 2018 D1
- 2024 BUPT Programming Contest F
- Petrozavodsk Winter-2018. Carnegie Mellon U Contest
- Toyota Programming Contest 2024#3(AtCoder Beginner Contest 344)
- UNIQUE VISION Programming Contest 2024 Spring(AtCoder Beginner Contest 346)Spring
- KEYENCE Programming Contest 2024(AtCoder Beginner Contest 374)題解
- Toyota Programming Contest 2024#11(AtCoder Beginner Contest 379)
- Toyota Programming Contest 2024#7(AtCoder Beginner Contest 362)
- The 2022 ICPC Asia Hangzhou Regional Programming Contest
- Hitachi Vantara Programming Contest 2024(AtCoder Beginner Contest 368)F - Dividing GameGAM
- Hitachi Vantara Programming Contest 2024(AtCoder Beginner Contest 368)題解A~D
- Toyota Programming Contest 2024#11(AtCoder Beginner Contest 379)題解
- 2020-2021 “Orz Panda” Cup Programming Contest
- 2018-2019 ACM-ICPC, Asia Seoul Regional Contest——A - CircuitsACMUI
- Toyota Programming Contest 2024#11(AtCoder Beginner Contest 379)題解總結
- 2024.10.3 2022-2023 ICPC Brazil Subregional Programming Contest