前言
在做“一生一芯”的時候,碰見第一個學習坡度陡峭,而又無法避開的一點:diplomacy
這是一個包含在rocket-chip中的工具,首先如何匯入就是一個難題;其次,diplomac其使用了非常多的scala高階語法,這需要對語言有一定的熟悉度。
根據過往經歷來看,我敢肯定在我學會後再回過頭看這個問題肯定是較為簡單,也無法理解新手在這方面的疑惑。
故在學習時同步記下這篇文章,以希望留下一些記錄,待以後查閱、後人借鑑。
————2024.5.4
準備思路
準備方面,我使用了ysyx餘博的工程,可以較好地本地匯入rocket-chip的包
省去了寫mill的煩惱
用的是chisel7
然後看程式碼(程式碼+語法)
以這份翻譯(官方的樣例工程)作為展開https://shili2017.github.io/posts/CHISEL1/
先粘一份完整程式碼,然後聽我慢慢解析。這份程式碼是對import的有些改動的。
package ysyx
import chisel3._
import chisel3.experimental.SourceInfo
import chisel3.util.random.FibonacciLFSR
import circt.stage.ChiselStage
import org.chipsalliance.cde.config.Parameters
import chisel3._
import org.chipsalliance.cde.config.Parameters
import freechips.rocketchip.system.DefaultConfig
import freechips.rocketchip.diplomacy._
case class UpwardParam(width: Int)
case class DownwardParam(width: Int)
case class EdgeParam(width: Int)
// PARAMETER TYPES: D U E B
object AdderNodeImp extends SimpleNodeImp[DownwardParam, UpwardParam, EdgeParam, UInt] {
def edge(pd: DownwardParam, pu: UpwardParam, p: Parameters, sourceInfo: SourceInfo) = {
if (pd.width < pu.width) EdgeParam(pd.width) else EdgeParam(pu.width)
}
def bundle(e: EdgeParam) = UInt(e.width.W)
def render(e: EdgeParam) = RenderedEdge("blue", s"width = ${e.width}")
}
/** node for [[AdderDriver]] (source) */
class AdderDriverNode(widths: Seq[DownwardParam])(implicit valName: ValName)
extends SourceNode(AdderNodeImp)(widths)
/** node for [[AdderMonitor]] (sink) */
class AdderMonitorNode(width: UpwardParam)(implicit valName: ValName)
extends SinkNode(AdderNodeImp)(Seq(width))
/** node for [[Adder]] (nexus) */
class AdderNode(dFn: Seq[DownwardParam] => DownwardParam,
uFn: Seq[UpwardParam] => UpwardParam)(implicit valName: ValName)
extends NexusNode(AdderNodeImp)(dFn, uFn)
/** adder DUT (nexus) */
class Adder(implicit p: Parameters) extends LazyModule {
val node = new AdderNode (
{ case dps: Seq[DownwardParam] =>
require(dps.forall(dp => dp.width == dps.head.width), "inward, downward adder widths must be equivalent")
dps.head
},
{ case ups: Seq[UpwardParam] =>
require(ups.forall(up => up.width == ups.head.width), "outward, upward adder widths must be equivalent")
ups.head
}
)
lazy val module = new LazyModuleImp(this) {
require(node.in.size >= 2)
node.out.head._1 := node.in.unzip._1.reduce(_ + _)
}
override lazy val desiredName = "Adder"
}
/** driver (source)
* drives one random number on multiple outputs */
class AdderDriver(width: Int, numOutputs: Int)(implicit p: Parameters) extends LazyModule {
val node = new AdderDriverNode(Seq.fill(numOutputs)(DownwardParam(width)))
lazy val module = new LazyModuleImp(this) {
// check that node parameters converge after negotiation
val negotiatedWidths = node.edges.out.map(_.width)
require(negotiatedWidths.forall(_ == negotiatedWidths.head), "outputs must all have agreed on same width")
val finalWidth = negotiatedWidths.head
// generate random addend (notice the use of the negotiated width)
val randomAddend = FibonacciLFSR.maxPeriod(finalWidth)
// drive signals
node.out.foreach { case (addend, _) => addend := randomAddend }
}
override lazy val desiredName = "AdderDriver"
}
/** monitor (sink) */
class AdderMonitor(width: Int, numOperands: Int)(implicit p: Parameters) extends LazyModule {
val nodeSeq = Seq.fill(numOperands) { new AdderMonitorNode(UpwardParam(width)) }
val nodeSum = new AdderMonitorNode(UpwardParam(width))
lazy val module = new LazyModuleImp(this) {
val io = IO(new Bundle {
val error = Output(Bool())
})
// print operation
printf(nodeSeq.map(node => p"${node.in.head._1}").reduce(_ + p" + " + _) + p" = ${nodeSum.in.head._1}")
// basic correctness checking
io.error := nodeSum.in.head._1 =/= nodeSeq.map(_.in.head._1).reduce(_ + _)
}
override lazy val desiredName = "AdderMonitor"
}
/** top-level connector */
class AdderTestHarness()(implicit p: Parameters) extends LazyModule {
val numOperands = 2
val adder = LazyModule(new Adder)
// 8 will be the downward-traveling widths from our drivers
val drivers = Seq.fill(numOperands) { LazyModule(new AdderDriver(width = 8, numOutputs = 2)) }
// 4 will be the upward-traveling width from our monitor
val monitor = LazyModule(new AdderMonitor(width = 4, numOperands = numOperands))
// create edges via binding operators between nodes in order to define a complete graph
drivers.foreach{ driver => adder.node := driver.node }
drivers.zip(monitor.nodeSeq).foreach { case (driver, monitorNode) => monitorNode := driver.node }
monitor.nodeSum := adder.node
lazy val module = new LazyModuleImp(this) {
// when(monitor.module.io.error) {
// printf("something went wrong")
// }
}
override lazy val desiredName = "AdderTestHarness"
}
object Elaborate extends App {
// (new ChiselStage).execute(args, Seq(chisel3.stage.ChiselGeneratorAnnotation(
// () => LazyModule(new AdderTestHarness()(Parameters.empty)).module))
// )
val verilog = ChiselStage.emitSystemVerilog(
LazyModule(new AdderTestHarness()(Parameters.empty)).module
)
println(verilog)
}
引數協商和傳遞
引數
case class UpwardParam(width: Int)
case class DownwardParam(width: Int)
case class EdgeParam(width: Int)
看到這段程式碼,有一個問題,這個case class有什麼用?
case class
case class是一種特殊型別的類
case class = class + 一坨
case class Person(name: String, age: Int)
等價於
class Person(val name: String, val age: Int) {
override def toString = s"Person(name=$name, age=$age)"
override def equals(other: Any) = other match {
case that: Person => this.name == that.name && this.age == that.age
case _ => false
}
override def hashCode() = scala.util.hashing.MurmurHash3.productHash(this)
}
object Person {
def apply(name: String, age: Int) = new Person(name, age)
def unapply(p: Person): Option[(String, Int)] = Some((p.name, p.age))
}
注意case class這裡的引數列表,預設情況下,case clas的構造引數會轉換成val型別的欄位
節點
在節點實現(即NodeImp中),我們描述引數如何在我們的圖中流動,以及如何在節點之間協商引數。邊引數(E)描述了需要在邊上傳遞的資料型別,在這個例子中就是Int;捆綁引數(B)描述了模組之間硬體實現的引數化埠的資料型別,在這個例子中則為UInt。此處edge函式實際執行了節點之間的引數協商,比較了向上和向下傳播的引數,並選擇資料寬度較小的那個作為協商結果。
// PARAMETER TYPES: D U E B
object AdderNodeImp extends SimpleNodeImp[DownwardParam, UpwardParam, EdgeParam, UInt] {
def edge(pd: DownwardParam, pu: UpwardParam, p: Parameters, sourceInfo: SourceInfo) = {
if (pd.width < pu.width) EdgeParam(pd.width) else EdgeParam(pu.width)
}
def bundle(e: EdgeParam) = UInt(e.width.W)
def render(e: EdgeParam) = RenderedEdge("blue", s"width = ${e.width}")
}
/** node for [[AdderDriver]] (source) */
class AdderDriverNode(widths: Seq[DownwardParam])(implicit valName: ValName)
extends SourceNode(AdderNodeImp)(widths)
/** node for [[AdderMonitor]] (sink) */
class AdderMonitorNode(width: UpwardParam)(implicit valName: ValName)
extends SinkNode(AdderNodeImp)(Seq(width))
/** node for [[Adder]] (nexus) */
class AdderNode(dFn: Seq[DownwardParam] => DownwardParam,
uFn: Seq[UpwardParam] => UpwardParam)(implicit valName: ValName)
extends NexusNode(AdderNodeImp)(dFn, uFn)
建立LazyModule
lazy
scala中,lazy表示的是使用時初始化
另外,懶惰初始化可以應用於val和def(雖然def預設就是懶惰的,但懶惰val和def在語義上有所不同,val初始化後值不>變,而def每次呼叫都可能有不同結果)。雖然從懶惰初始化的角度看,lazy val和沒有具體實現的def看起來相似,但它們之間存在本質區別:
- lazy val在首次訪問後會快取其結果,之後的訪問直接返回快取的值,適用於計算密集型或資源載入場景。
- def則是每次呼叫時都執行其函式體,適合於那些結果隨時間或上下文變化的情況。
implicit
這個概念比較龐雜
- implicit method:型別轉換
implicit def intToDouble(i: Int): Double = i.toDouble def processNumber(num: Double): Unit = println(num) processNumber(5) // 由於存在隱式轉換,這裡可以傳入Int型別
- implicit param:預設行為、實現策略模式或依賴注入
case class LogLevel(level: String) def log(message: String)(implicit level: LogLevel = LogLevel("INFO")) = println(s"${level.level}: $message") log("This is an info message") // 使用預設的日誌級別 implicit val debugLevel = LogLevel("DEBUG") log("This is a debug message") // 使用隱式提供的DEBUG級別
- implicit class:
implicit class RichString(s: String) { def lengthSquared: Int = s.length * s.length } val str = "Hello" println(str.lengthSquared) // 利用隱式轉換呼叫新方法
Lazy的意思是指將表示式的evaluation推遲到需要的時候。在建立Diplomacy圖之後,引數協商是lazy完成的,因此我們想要引數化的硬體也必須延遲生成,因此需要使用LazyModule。需要注意的是,定義Diplomacy圖的元件(在這個例子裡為節點)的建立不是lazy的,模組硬體需要寫在LazyModuleImp。
在這個例子中,我們希望driver將相同位寬的資料輸入到加法器中,monitor的資料來自加法器的輸出以及driver,所有這些資料位寬都應該相同。我們可以透過AdderNode的require來限制這些引數,將DownwardParam向下傳遞,以及將UpwardParam向上傳遞。
/** adder DUT (nexus) */
class Adder(implicit p: Parameters) extends LazyModule {
val node = new AdderNode (
{ case dps: Seq[DownwardParam] =>
require(dps.forall(dp => dp.width == dps.head.width), "inward, downward adder widths must be equivalent")
dps.head
},
{ case ups: Seq[UpwardParam] =>
require(ups.forall(up => up.width == ups.head.width), "outward, upward adder widths must be equivalent")
ups.head
}
)
lazy val module = new LazyModuleImp(this) {
require(node.in.size >= 2)
node.out.head._1 := node.in.unzip._1.reduce(_ + _)
}
override lazy val desiredName = "Adder"
}
Partial Function
好了,又看不懂了
{ case dps: Seq[DownwardParam] => require(dps.forall(dp => dp.width == dps.head.width), "inward, downward adder widths must be equivalent") dps.head }
怎麼傳參的時候就這麼一個東西就作為引數了呢
class AdderNode(dFn: Seq[DownwardParam] => DownwardParam, uFn: Seq[UpwardParam] => UpwardParam)
可以看到入參是一個傳名函式(傳名函式是什麼?還是百度吧)
也就是說,那一坨花括號是一個函式{ case ... }的結構實際上是在定義一個部分函式(PartialFunction),它是一種特殊的函式型別,經常與模式匹配一起使用。部分函式可以理解為一個僅定義了部分情況(cases)的函式,對於未定義的情況,如果嘗試呼叫則會丟擲異常。
- 讓我們直接以更簡單的例子說明部分函式的用法:
簡單例子:定義一個處理整數的匿名部分函式
val processNumbers: PartialFunction[Int, String] = { case x if x > 0 => s"$x is positive" case 0 => "Zero" } processNumbers(5) // 輸出: "5 is positive" processNumbers(0) // 輸出: "Zero" // processNumbers(-1) // 如果嘗試呼叫,會丟擲MatchError異常
在這個例子中,processNumbers是一個PartialFunction[Int, String],它只定義了兩個情況:當輸入的整數大於0時和等於0時的處理邏輯。如果嘗試傳入一個負數,由於沒有對應的case分支,Scala會丟擲MatchError。
回到原始程式碼片段:
{ case dps: Seq[DownwardParam] => require(dps.forall(dp => dp.width == dps.head.width), "inward, downward adder widths must be equivalent") dps.head }
這裡定義的就是這樣一個部分函式,它只匹配Seq[DownwardParam]型別的輸入,執行一系列操作後返回dps.head。雖然沒有直接寫出match關鍵字,但這種結構實質上是在做模式匹配的工作,是Scala中一種優雅的處理不同型別或情況的函式定義方式。
initializer block
又看不懂了,建構函式垢面後
lazy val module = new LazyModuleImp(this) { require(node.in.size >= 2 node.out.head._1 := no.in.unzip._1.reduce(_ + _) }
在Scala中,當你在建立一個類的例項並立即跟隨一個大括號 { ... } 時,這個大括號內的程式碼塊實際上是該類建構函式的一部分,被稱為初始化塊(initializer block)。初始化塊會在類的建構函式執行完畢後立即執行,常用於進行進一步的初始化設定或者執行一些初始化邏輯。初始化塊可以訪問到類的所有成員,包括由建構函式引數初始化的成員。
class Person(val name:String){ println(s"1.class Person($name)") val age=10 } val p=new Person("as"){ println(s"2.obj p ($name,$age)") } // 1.class Person(as) // 2.obj p (as,10)
三要素:driver(驅動)、dut(功能模組)、monitor(檢查)中已經完成了dut的編寫,接下來是driver和monitor
AdderDriver隨機生成位寬為finalWidth的資料,並傳遞到numOutputs個source。
/** driver (source)
* drives one random number on multiple outputs */
class AdderDriver(width: Int, numOutputs: Int)(implicit p: Parameters) extends LazyModule {
val node = new AdderDriverNode(Seq.fill(numOutputs)(DownwardParam(width)))
lazy val module = new LazyModuleImp(this) {
// check that node parameters converge after negotiation
val negotiatedWidths = node.edges.out.map(_.width)
require(negotiatedWidths.forall(_ == negotiatedWidths.head), "outputs must all have agreed on same width")
val finalWidth = negotiatedWidths.head
// generate random addend (notice the use of the negotiated width)
val randomAddend = FibonacciLFSR.maxPeriod(finalWidth)
// drive signals
node.out.foreach { case (addend, _) => addend := randomAddend }
}
override lazy val desiredName = "AdderDriver"
}
AdderMonitor列印加法器輸出並檢測錯誤,有兩個AdderMonitorNode節點從AdderDriver接收加法的兩個輸入,以及一個AdderMonitorNode節點從加法器接收加法的輸出。
/** monitor (sink) */
class AdderMonitor(width: Int, numOperands: Int)(implicit p: Parameters) extends LazyModule {
val nodeSeq = Seq.fill(numOperands) { new AdderMonitorNode(UpwardParam(width)) }
val nodeSum = new AdderMonitorNode(UpwardParam(width))
lazy val module = new LazyModuleImp(this) {
val io = IO(new Bundle {
val error = Output(Bool())
})
// print operation
printf(nodeSeq.map(node => p"${node.in.head._1}").reduce(_ + p" + " + _) + p" = ${nodeSum.in.head._1}")
// basic correctness checking
io.error := nodeSum.in.head._1 =/= nodeSeq.map(_.in.head._1).reduce(_ + _)
}
override lazy val desiredName = "AdderMonitor"
}