【模板】生成函式 I

shyiaw發表於2024-05-02

多項式與形式冪級數

  1. 多項式:\(A(x)=\sum\limits_{i=0}^{n}a_ix^i\)
  2. 形式冪級數:\(A(x)=\sum\limits_{i\ge0}a_ix^i\)形式冪級數不用考慮其收斂域

形式冪級數(多項式)的運算

\(A(x)=\sum\limits_{i\ge0}a_ix^i,B(x)=\sum\limits_{i\ge0}b_ix^i\)

  1. \(A(x)+B(x)=\sum\limits_{i\ge0}(a_i+b_i)x^i\)
  2. \(A(x)-B(x)=\sum\limits_{i\ge0}(a_i-b_i)x^i\)
  3. \(A(x)\cdot B(x)=\sum\limits_{k\ge0}\sum\limits_{i+j=k}(a_i\cdot b_j)x^i\)
  4. 記形式冪級數(多形式)\(A(x)\)\(x^n\) 的係數為 \([x^n]A(x)\)

常生成函式

定義:一個數列 \(\{a_n\}\) 對應的常生成函式為 \(A(x)=\sum\limits_{i\ge0}a_ix^i\)
image

形式冪級數的逆元

  1. 形式冪級數 \(A(x)\) 的逆元:\(A(x)B(x)=1\)
  2. 逆元存在的條件:\([x^0]A(x)\ne0\)
  3. 逆元可用於簡化運算
    image
  4. \(1+x+x^2+\dots+x^n=\frac{1-x^{n+1}}{1-x}\)
  5. \(1+x^{a}+x^{2a}+\dots+x^{na}=\frac{1-x^{an+a}}{1-x^a},a\in N_{+}\)

生成函式與遞推數列的關係

image

image

指數生成函式

定義:一個數列 \(\{a_n\}\) 對應的指數生成函式為 \(A(x)=\sum\limits_{n\ge 0}a_n\frac{x^n}{n!}\)
image

  1. \({exp(x)}^a=exp(ax)\)
  2. \(exp(x+y)=exp(x)exp(y)\)
  3. \(\frac{exp(x)+exp(-x)}{2}=1+\frac{x^2}{2!}+\dots+\frac{x^{2n}}{(2n)!}+\dots\)
  4. \(\frac{exp(x)-exp(-x)}{2}=\frac{x}{1!}+\dots+\frac{x^{2k+1}}{(2k+1)!}+\dots\)

相關文章