本文分享自華為雲社群《Ascend C 自定義PRelu運算元》,作者: jackwangcumt。
1 PRelu運算元概述
PReLU是 Parametric Rectified Linear Unit的縮寫,首次由何凱明團隊提出,和LeakyReLU非常類似,是Relu的改進版本,在幾乎沒有增加額外引數的前提下既可以提升模型的擬合能力,又能減小過擬合風險。PReLU的數學表示式我們可以參考pytorch中PReLU的描述(https://pytorch.org/docs/2.1/generated/torch.nn.PReLU.html#prelu):
2 Ascend C自定義運算元
基於Ascend C進行自定義運算元開發之前,需要成功基於昇騰裝置安裝相關的驅動、韌體以及開發者套件。我之前安裝的開發者套件版本過低,編譯執行官方的Sample部分示例會報錯,因此,需要重新安裝一個8.0新版本,依次用root執行如下命令:
# 解除安裝 cann-toolkit_7.0.RC1 root@atlas500ai:/home/kzroot/mysoft# ./Ascend-cann-toolkit_7.0.RC1_linux-aarch64.run --uninstall # 清空遺留檔案 rm -rf /usr/local/Ascend/ascend-toolkit/* # 安裝 cann-toolkit_8.0.RC1.alpha002 ./Ascend-cann-toolkit_8.0.RC1.alpha002_linux-aarch64.run --install --install-for-all --quiet #安裝依賴protobuf pip3 install protobuf==3.20.0
在一個目錄下新建單運算元工程描述檔案 PReluCustom.json ,內容參考如下:
[ { "op": "PReluCustom", "language": "cpp", "input_desc": [ { "name": "x", "param_type": "required", "format": [ "ND" ], "type": [ "float" ] } ], "output_desc": [ { "name": "y", "param_type": "required", "format": [ "ND" ], "type": [ "float" ] } ], "attr": [ { "name": "alpha", "param_type": "optional", "type": "float", "default_value": "0.002" } ] } ]
用開發者套件中內建的運算元工程生成工具msopgen ,透過描述檔案自動生成單運算元工程程式碼目錄:
/usr/local/Ascend/ascend-toolkit/8.0.RC1.alpha002/python/site-packages/bin/msopgen gen -i ./PReluCustom.json -c ai_core-Ascend310P3 -lan cpp -out ./PReluCustom
執行成功後,會基於C++語言生成單運算元工程程式碼目錄PReluCustom,其中包含的CMakePresets.json檔案,有幾個重要的配置項,特別是開發者套件安裝的路徑ASCEND_CANN_PACKAGE_PATH,需要根據本地情況進行修改,我這裡是 /usr/local/Ascend/ascend-toolkit/latest 否則會出現編譯錯誤,我這裡修改的部分程式碼如下:
{ "version": 1, "cmakeMinimumRequired": { "major": 3, "minor": 19, "patch": 0 }, "configurePresets": [ { "name": "default", "displayName": "Default Config", "description": "Default build using Unix Makefiles generator", "generator": "Unix Makefiles", "binaryDir": "${sourceDir}/build_out", "cacheVariables": { "CMAKE_BUILD_TYPE": { "type": "STRING", "value": "Release" }, "ENABLE_SOURCE_PACKAGE": { "type": "BOOL", "value": "True" }, "ENABLE_BINARY_PACKAGE": { "type": "BOOL", "value": "True" }, "ASCEND_COMPUTE_UNIT": { "type": "STRING", "value": "ascend310p" }, "ENABLE_TEST": { "type": "BOOL", "value": "True" }, "vendor_name": { "type": "STRING", "value": "customize" }, "ASCEND_CANN_PACKAGE_PATH": { "type": "PATH", "value": "/usr/local/Ascend/ascend-toolkit/latest" }, "ASCEND_PYTHON_EXECUTABLE": { "type": "STRING", "value": "python3" }, "CMAKE_INSTALL_PREFIX": { "type": "PATH", "value": "${sourceDir}/build_out" }, "ENABLE_CROSS_COMPILE": { "type": "BOOL", "value": "False" }, "CMAKE_CROSS_PLATFORM_COMPILER": { "type": "PATH", "value": "/usr/bin/aarch64-linux-gnu-g++" } } } ] }
其中的vendor_name 可以根據自己的情況進行修改,預設的運算元部署後會放於customize 目錄下,這裡可以修改,比如改成jackwangcumt。而且單運算元工程每次部署會進行覆蓋,因此,這裡需要注意一下。生成的p_relu_custom.cpp檔案,重點的運算元計算為:
__aicore__ inline void Compute(int32_t progress) { // deque input tensors from VECIN queue LocalTensor<float> xLocal = inQueueX.DeQue<float>(); LocalTensor<float> yLocal = outQueueY.AllocTensor<float>(); LocalTensor<float> tmpTensor1 = tmpBuffer1.Get<float>(); float inputVal = 0.0; Maxs(tmpTensor1, xLocal, inputVal, this->tileLength); // x >= 0 --> x // x < 0 Mins(xLocal, xLocal, inputVal, this->tileLength); Muls(xLocal, xLocal, this->alpha, this->tileLength); Add(yLocal, xLocal, tmpTensor1, this->tileLength); outQueueY.EnQue<float>(yLocal); // free input tensors for reuse inQueueX.FreeTensor(xLocal); }
這裡透過內建的原生運算元來分別處理輸入x<0和x>=0兩個部分的資料處理,再透過Add將兩個部分合並,得到最終的資料。在op_host目錄下的p_relu_custom_tiling.h程式碼如下所示:
#include "register/tilingdata_base.h" namespace optiling { BEGIN_TILING_DATA_DEF(TilingData) TILING_DATA_FIELD_DEF(uint32_t, totalLength); TILING_DATA_FIELD_DEF(uint32_t, tileNum); TILING_DATA_FIELD_DEF(float, alpha); END_TILING_DATA_DEF; REGISTER_TILING_DATA_CLASS(PReluCustom, TilingData) }
p_relu_custom.cpp 核心程式碼如下所示:
#include "p_relu_custom_tiling.h" #include "register/op_def_registry.h" namespace optiling { const uint32_t BLOCK_DIM = 8; const uint32_t TILE_NUM = 16 ; // 這個數可能影響測試是否透過 static ge::graphStatus TilingFunc(gert::TilingContext* context) { TilingData tiling; uint32_t totalLength = context->GetInputTensor(0)->GetShapeSize(); const gert::RuntimeAttrs *attrs = context->GetAttrs(); const float *alpha = attrs->GetAttrPointer<float>(0); context->SetBlockDim(BLOCK_DIM); tiling.set_totalLength(totalLength); tiling.set_tileNum(TILE_NUM); tiling.set_alpha(*alpha); tiling.SaveToBuffer(context->GetRawTilingData()->GetData(), context->GetRawTilingData()->GetCapacity()); context->GetRawTilingData()->SetDataSize(tiling.GetDataSize()); size_t *currentWorkspace = context->GetWorkspaceSizes(1); currentWorkspace[0] = 0; return ge::GRAPH_SUCCESS; } } namespace ge { static ge::graphStatus InferShape(gert::InferShapeContext* context) { const gert::Shape* x1_shape = context->GetInputShape(0); gert::Shape* y_shape = context->GetOutputShape(0); *y_shape = *x1_shape; return GRAPH_SUCCESS; } } namespace ops { class PReluCustom : public OpDef { public: explicit PReluCustom(const char* name) : OpDef(name) { this->Input("x") .ParamType(REQUIRED) .DataType({ge::DT_FLOAT}) .Format({ge::FORMAT_ND}) .UnknownShapeFormat({ge::FORMAT_ND}); this->Output("y") .ParamType(REQUIRED) .DataType({ge::DT_FLOAT}) .Format({ge::FORMAT_ND}) .UnknownShapeFormat({ge::FORMAT_ND}); this->Attr("alpha").AttrType(OPTIONAL).Float(0.002); this->SetInferShape(ge::InferShape); this->AICore() .SetTiling(optiling::TilingFunc); this->AICore().AddConfig("ascend310p"); } }; OP_ADD(PReluCustom); }
執行如下命令,編譯運算元工程:
root@atlas500ai:/home/kzroot/mysoft/myAscendC/PReluSample/PReluCustom# bash build.sh
Self-extractable archive "custom_opp_ubuntu_aarch64.run" successfully created. 則表明編譯成功。執行如下命令進行運算元部署:
PReluCustom# ./build_out/custom_opp_ubuntu_aarch64.run
3 Ascend C自定義運算元驗證
基於Ascend C 自定義運算元需要進行正確性驗證,這裡新建一個AclNNInvocation目錄(可以參考官方示例中的相關內容),目錄結構如下所示:
其中的gen_data.py用於生成測試的輸入和輸出資料,verity_result.py用於驗證精度。gen_data.py內容如下所示:
import numpy as np import os def gen_golden_data_simple(): alpha = np.array(0.002, dtype=np.float32) input_x = np.random.uniform(-100, 100, [8, 200, 1024]).astype(np.float32) golden = np.where(input_x >= 0, input_x, input_x * alpha).astype(np.float32) os.system("mkdir -p input") os.system("mkdir -p output") input_x.tofile("./input/input_x.bin") golden.tofile("./output/golden.bin") if __name__ == "__main__": gen_golden_data_simple()
src目錄下的CMakeLists.txt有一個環境變數可能需要修改,即 set(CUST_PKG_PATH "${INC_PATH}/opp/vendors/customize/op_api") ,預設是不需要修改的,他需要和vendor_name一致。執行如下命令進行測試:
PReluSample/AclNNInvocation# bash run.sh
點選關注,第一時間瞭解華為雲新鮮技術~