grad_cam下的自定義模型獲取熱力圖

太好了还有脑子可以用發表於2024-04-02

原文連結:https://blog.csdn.net/zxdd2018/article/details/125505352

另附:imagenet圖對應https://www.cnblogs.com/cpxlll/p/13493247.html

1.(多張圖片)

備註:gram_cam_1

import os
import numpy as np
import torch
import cv2
import matplotlib.pyplot as plt
import torchvision.models as models
from torchvision.transforms import Compose, Normalize, ToTensor
from cifar.resnet import ResNet32

class GradCAM():
    '''
    Grad-cam: Visual explanations from deep networks via gradient-based localization
    Selvaraju R R, Cogswell M, Das A, et al.
    https://openaccess.thecvf.com/content_iccv_2017/html/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.html
    '''

    def __init__(self, model, target_layers, input_size, use_cuda=True):
        super(GradCAM).__init__()
        self.use_cuda = use_cuda
        self.model = model
        self.target_layers = target_layers

        self.target_layers.register_forward_hook(self.forward_hook)
        self.target_layers.register_full_backward_hook(self.backward_hook)

        self.activations = []
        self.grads = []
        self.input_size = input_size

    def forward_hook(self, module, input, output):
        self.activations.append(output[0])

    def backward_hook(self, module, grad_input, grad_output):
        self.grads.append(grad_output[0].detach())

    def calculate_cam(self, model_input):
        if self.use_cuda:
            device = torch.device('cuda')
            self.model.to(device)
            model_input = model_input.to(device)
        self.model.eval()

        # forward
        output, _ = self.model(model_input, 0)  # 修改這裡以匹配您模型的輸出
        y_hat = output
        max_class = np.argmax(y_hat.cpu().data.numpy(), axis=1)

        # backward
        self.model.zero_grad()
        y_c = y_hat[0, max_class]
        y_c.backward()

        # get activations and gradients
        activations = self.activations[0].cpu().data.numpy().squeeze()
        grads = self.grads[0].cpu().data.numpy().squeeze()

        # calculate weights
        weights = np.mean(grads.reshape(grads.shape[0], -1), axis=1)
        weights = weights.reshape(-1, 1, 1)
        cam = (weights * activations).sum(axis=0)
        cam = np.maximum(cam, 0)
        cam = cam / cam.max()
        return cam

    @staticmethod
    def show_cam_on_image(image, cam, save_path=None):
        h, w = image.shape[:2]

        cam = cv2.resize(cam, (w, h))  # 調整熱圖的尺寸與影像相同
        cam = cam / cam.max()
        heatmap = cv2.applyColorMap((255 * cam).astype(np.uint8), cv2.COLORMAP_JET)
        heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)

        image = image / image.max()
        heatmap = heatmap / heatmap.max()

        result = 0.4 * heatmap + 0.6 * image
        result = result / result.max()

        plt.figure()
        plt.imshow((result * 255).astype(np.uint8))
        plt.colorbar(shrink=0.8)
        plt.tight_layout()
        if save_path:
            plt.savefig(save_path)
        # plt.show()

    @staticmethod
    def preprocess_image(img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
        preprocessing = Compose([
            ToTensor(),
            Normalize(mean=mean, std=std)
        ])
        return preprocessing(img.copy()).unsqueeze(0)


if __name__ == '__main__':
    # 載入您的模型
    # 假設您的模型儲存在名為custom_model.pth.tar的檔案中
    checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint1/151_31.21.pth.tar'  # 模型的路徑,你需要替換成你儲存的模型的路徑
    custom_model = ResNet32(num_classes=100)  # 假設你使用的是CIFAR-100資料集
    checkpoint = torch.load(checkpoint_path)
    custom_model.load_state_dict(checkpoint['state_dict'])

    folder_path = '/home/zy/pycharm/project/MetaSAug-main/test/fistcam/new_img/'
    image_folders = [f for f in os.listdir(folder_path) if os.path.isdir(os.path.join(folder_path, f))]
    for folder_name in image_folders:
        folder_image_files = [f for f in os.listdir(os.path.join(folder_path, folder_name)) if
                              f.endswith(('.png', '.jpg', '.JPEG'))]
        print(f"資料夾 {folder_name} 中的圖片檔案:")
        for image_file in folder_image_files:
            print(image_file)
            image_dir = '/home/zy/pycharm/project/MetaSAug-main/test/fistcam/new_img/'+folder_name+'/'+image_file
            image = cv2.imread(image_dir)
            # 將影像調整為相同的大小
            resized_image = cv2.resize(image, (375, 500))  # 修改為你希望的尺寸
            input_tensor = GradCAM.preprocess_image(resized_image)
            grad_cam = GradCAM(custom_model, custom_model.layer4[-1], (256, 256))  # 替換為您的目標層
            cam = grad_cam.calculate_cam(input_tensor)
            # 將熱圖調整為相同的大小
            resized_cam = cv2.resize(cam, (resized_image.shape[1], resized_image.shape[0]))

            save_path = '/home/zy/pycharm/project/MetaSAug-main/test/cam/cam_img/'+folder_name+'_'+image_file
            GradCAM.show_cam_on_image(image, cam, save_path)


2.(單個圖片)

備註:gram_cam_2

import os
import numpy as np
import torch
import cv2
import matplotlib.pyplot as plt
import torchvision.models as models
from torchvision.transforms import Compose, Normalize, ToTensor
from cifar.resnet import ResNet32

class GradCAM():
    '''
    Grad-cam: Visual explanations from deep networks via gradient-based localization
    Selvaraju R R, Cogswell M, Das A, et al.
    https://openaccess.thecvf.com/content_iccv_2017/html/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.html
    '''

    def __init__(self, model, target_layers, input_size, use_cuda=True):
        super(GradCAM).__init__()
        self.use_cuda = use_cuda
        self.model = model
        self.target_layers = target_layers

        self.target_layers.register_forward_hook(self.forward_hook)
        self.target_layers.register_full_backward_hook(self.backward_hook)

        self.activations = []
        self.grads = []
        self.input_size = input_size

    def forward_hook(self, module, input, output):
        self.activations.append(output[0])

    def backward_hook(self, module, grad_input, grad_output):
        self.grads.append(grad_output[0].detach())

    def calculate_cam(self, model_input):
        if self.use_cuda:
            device = torch.device('cuda')
            self.model.to(device)
            model_input = model_input.to(device)
        self.model.eval()

        # forward
        output, _ = self.model(model_input, 0)  # 修改這裡以匹配您模型的輸出
        y_hat = output
        max_class = np.argmax(y_hat.cpu().data.numpy(), axis=1)

        # backward
        self.model.zero_grad()
        y_c = y_hat[0, max_class]
        y_c.backward()

        # get activations and gradients
        activations = self.activations[0].cpu().data.numpy().squeeze()
        grads = self.grads[0].cpu().data.numpy().squeeze()

        # calculate weights
        weights = np.mean(grads.reshape(grads.shape[0], -1), axis=1)
        weights = weights.reshape(-1, 1, 1)
        cam = (weights * activations).sum(axis=0)
        cam = np.maximum(cam, 0)
        cam = cam / cam.max()

        # Resize CAM to match the input size
        cam = cv2.resize(cam, (model_input.size(3), model_input.size(2)))

        return cam

    @staticmethod
    def show_cam_on_image(image, cam, save_path=None):
        h, w = image.shape[:2]

        cam = cv2.resize(cam, (w, h))  # 調整熱圖的大小與原影像相同
        cam = cam / cam.max()
        heatmap = cv2.applyColorMap((255 * cam).astype(np.uint8), cv2.COLORMAP_JET)
        heatmap = cv2.cvtColor(heatmap, cv2.COLOR_BGR2RGB)

        image = cv2.resize(image, (w, h))  # 調整原始影像的大小與熱圖相同
        image = image / image.max()
        heatmap = heatmap / heatmap.max()

        result = 0.4 * heatmap + 0.6 * image
        result = result / result.max()

        plt.figure()
        plt.imshow((result * 255).astype(np.uint8))
        plt.colorbar(shrink=0.8)
        plt.tight_layout()
        if save_path:
            plt.savefig(save_path)
        plt.show()

    @staticmethod
    def preprocess_image(img, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
        preprocessing = Compose([
            ToTensor(),
            Normalize(mean=mean, std=std)
        ])
        return preprocessing(img.copy()).unsqueeze(0)


if __name__ == '__main__':
    # 載入您的模型
    # 假設您的模型儲存在名為custom_model.pth.tar的檔案中

    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/1_1.21.pth.tar'  # 模型的路徑,你需要替換成你儲存的模型的路徑
    checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/3_2.46.pth.tar'  # 模型的路徑,你需要替換成你儲存的模型的路徑
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/40_20.66.pth.tar'  # 模型的路徑,你需要替換成你儲存的模型的路徑
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/80_26.27.pth.tar'  # 模型的路徑,你需要替換成你儲存的模型的路徑
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/120_26.86.pth.tar'  # 模型的路徑,你需要替換成你儲存的模型的路徑
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint2/160_32.66.pth.tar'  # 模型的路徑,你需要替換成你儲存的模型的路徑

    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint1/151_31.21.pth.tar'  # 模型的路徑,你需要替換成你儲存的模型的路徑

    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/3_5.27.pth.tar'  # 模型的路徑,你需要替換成你儲存的模型的路徑
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/40_20.96.pth.tar'  # 模型的路徑,你需要替換成你儲存的模型的路徑
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/80_25.3.pth.tar'  # 模型的路徑,你需要替換成你儲存的模型的路徑
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/120_25.62.pth.tar'  # 模型的路徑,你需要替換成你儲存的模型的路徑
    # checkpoint_path = '/home/zy/pycharm/project/MetaSAug-main/cifar/checkpoint3/160_30.43.pth.tar'  # 模型的路徑,你需要替換成你儲存的模型的路徑

    custom_model = ResNet32(num_classes=100)  # 假設你使用的是CIFAR-100資料集
    checkpoint = torch.load(checkpoint_path)
    custom_model.load_state_dict(checkpoint['state_dict'])

    image_dir = '/home/zy/Desktop/img2/n03792782_22692.JPEG'

    image = cv2.imread(image_dir)
    resized_image = cv2.resize(image, (256, 256))  # 修改為模型的輸入尺寸
    input_tensor = GradCAM.preprocess_image(resized_image)
    grad_cam = GradCAM(custom_model, custom_model.layer4[-1], (256, 256))  # 替換為您的目標層
    cam = grad_cam.calculate_cam(input_tensor)
    save_path = '/home/zy/Desktop/img2/n03792782_22692_eda_1.jpg'
    GradCAM.show_cam_on_image(image, cam, save_path)

3.附件(ResNet32)

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torch.autograd import Variable
import torch.nn.init as init
import warnings
import matplotlib.pyplot as plt

warnings.filterwarnings('ignore')


# 定義了一個基類MetaModule,它是所有其他模組的父類。
# MetaModule提供了一些用於處理引數和更新引數的方法。
class MetaModule(nn.Module):
    # adopted from: Adrien Ecoffet https://github.com/AdrienLE
    def params(self):
        for name, param in self.named_params(self):
            yield param

    def named_leaves(self):
        return []

    def named_submodules(self):
        return []

    def named_params(self, curr_module=None, memo=None, prefix=''):
        if memo is None:
            memo = set()

        if hasattr(curr_module, 'named_leaves'):
            for name, p in curr_module.named_leaves():
                if p is not None and p not in memo:
                    memo.add(p)
                    yield prefix + ('.' if prefix else '') + name, p
        else:
            for name, p in curr_module._parameters.items():
                if p is not None and p not in memo:
                    memo.add(p)
                    yield prefix + ('.' if prefix else '') + name, p

        for mname, module in curr_module.named_children():
            submodule_prefix = prefix + ('.' if prefix else '') + mname
            for name, p in self.named_params(module, memo, submodule_prefix):
                yield name, p

    def update_params(self, lr_inner, first_order=False, source_params=None, detach=False):
        if source_params is not None:
            for tgt, src in zip(self.named_params(self), source_params):
                name_t, param_t = tgt
                grad = src
                if first_order:
                    grad = to_var(grad.detach().data)
                tmp = param_t - lr_inner * grad
                self.set_param(self, name_t, tmp)
        else:

            for name, param in self.named_params(self):
                if not detach:
                    grad = param.grad
                    if first_order:
                        grad = to_var(grad.detach().data)
                    tmp = param - lr_inner * grad
                    self.set_param(self, name, tmp)
                else:
                    param = param.detach_()
                    self.set_param(self, name, param)

    def set_param(self, curr_mod, name, param):
        if '.' in name:
            n = name.split('.')
            module_name = n[0]
            rest = '.'.join(n[1:])
            for name, mod in curr_mod.named_children():
                if module_name == name:
                    self.set_param(mod, rest, param)
                    break
        else:
            setattr(curr_mod, name, param)

    def detach_params(self):
        for name, param in self.named_params(self):
            self.set_param(self, name, param.detach())

    def copy(self, other, same_var=False):
        for name, param in other.named_params():
            if not same_var:
                param = to_var(param.data.clone(), requires_grad=True)
            self.set_param(name, param)


# 線性層:繼承自MetaModule類,並重寫了前向傳播方法。
class MetaLinear(MetaModule):
    def __init__(self, *args, **kwargs):
        super().__init__()
        ignore = nn.Linear(*args, **kwargs)

        self.register_buffer('weight', to_var(ignore.weight.data, requires_grad=True))
        self.register_buffer('bias', to_var(ignore.bias.data, requires_grad=True))

    def forward(self, x):
        return F.linear(x, self.weight, self.bias)

    def named_leaves(self):
        return [('weight', self.weight), ('bias', self.bias)]


# 歸一化線性層:繼承自MetaModule類,並重寫了前向傳播方法。
class MetaLinear_Norm(MetaModule):
    def __init__(self, *args, **kwargs):
        super().__init__()
        temp = nn.Linear(*args, **kwargs)
        temp.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)
        self.register_buffer('weight', to_var(temp.weight.data.t(), requires_grad=True))
        self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5)

    def forward(self, x):
        out = F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0))
        return out

    def named_leaves(self):
        return [('weight', self.weight)]


# 卷積層:繼承自MetaModule類,並重寫了前向傳播方法。
class MetaConv2d(MetaModule):
    def __init__(self, *args, **kwargs):
        super().__init__()
        ignore = nn.Conv2d(*args, **kwargs)

        self.in_channels = ignore.in_channels
        self.out_channels = ignore.out_channels
        self.stride = ignore.stride
        self.padding = ignore.padding
        self.dilation = ignore.dilation
        self.groups = ignore.groups
        self.kernel_size = ignore.kernel_size

        self.register_buffer('weight', to_var(ignore.weight.data, requires_grad=True))

        if ignore.bias is not None:
            self.register_buffer('bias', to_var(ignore.bias.data, requires_grad=True))
        else:
            self.register_buffer('bias', None)

    def forward(self, x):
        return F.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups)

    def named_leaves(self):
        return [('weight', self.weight), ('bias', self.bias)]


# 轉置卷積層:繼承自MetaModule類,並重寫了前向傳播方法。
class MetaConvTranspose2d(MetaModule):
    def __init__(self, *args, **kwargs):
        super().__init__()
        ignore = nn.ConvTranspose2d(*args, **kwargs)

        self.stride = ignore.stride
        self.padding = ignore.padding
        self.dilation = ignore.dilation
        self.groups = ignore.groups

        self.register_buffer('weight', to_var(ignore.weight.data, requires_grad=True))

        if ignore.bias is not None:
            self.register_buffer('bias', to_var(ignore.bias.data, requires_grad=True))
        else:
            self.register_buffer('bias', None)

    def forward(self, x, output_size=None):
        output_padding = self._output_padding(x, output_size)
        return F.conv_transpose2d(x, self.weight, self.bias, self.stride, self.padding,
                                  output_padding, self.groups, self.dilation)

    def named_leaves(self):
        return [('weight', self.weight), ('bias', self.bias)]


# 批歸一化層:繼承自MetaModule類,並重寫了前向傳播方法。
class MetaBatchNorm2d(MetaModule):
    def __init__(self, *args, **kwargs):
        super().__init__()
        ignore = nn.BatchNorm2d(*args, **kwargs)

        self.num_features = ignore.num_features
        self.eps = ignore.eps
        self.momentum = ignore.momentum
        self.affine = ignore.affine
        self.track_running_stats = ignore.track_running_stats

        if self.affine:
            self.register_buffer('weight', to_var(ignore.weight.data, requires_grad=True))
            self.register_buffer('bias', to_var(ignore.bias.data, requires_grad=True))

        if self.track_running_stats:
            self.register_buffer('running_mean', torch.zeros(self.num_features))
            self.register_buffer('running_var', torch.ones(self.num_features))
        else:
            self.register_parameter('running_mean', None)
            self.register_parameter('running_var', None)

    def forward(self, x):
        return F.batch_norm(x, self.running_mean, self.running_var, self.weight, self.bias,
                            self.training or not self.track_running_stats, self.momentum, self.eps)

    def named_leaves(self):
        return [('weight', self.weight), ('bias', self.bias)]


class LambdaLayer(MetaModule):
    def __init__(self, lambd):
        super(LambdaLayer, self).__init__()
        self.lambd = lambd

    def forward(self, x):
        return self.lambd(x)


# BasicBlock類,它是ResNet中的基本塊。它繼承自MetaModule類,並重寫了前向傳播方法。
class BasicBlock(MetaModule):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1, option='A'):
        super(BasicBlock, self).__init__()
        self.conv1 = MetaConv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = MetaBatchNorm2d(planes)
        self.conv2 = MetaConv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = MetaBatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != planes:
            if option == 'A':
                self.shortcut = LambdaLayer(lambda x:
                                            F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes // 4, planes // 4), "constant",
                                                  0))
            elif option == 'B':
                self.shortcut = nn.Sequential(
                    MetaConv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
                    MetaBatchNorm2d(self.expansion * planes)
                )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = F.relu(out)
        return out


# for metamodel
# 定義了ResNet32類,它是一個完整的ResNet模型。
# 它繼承自MetaModule類,並定義了ResNet的整體結構和前向傳播方法。
class ResNet32_meta(MetaModule):
    # _first_init_done = False

    def __init__(self, num_classes, block=BasicBlock, num_blocks=[5, 5, 5]):
        super(ResNet32_meta, self).__init__()
        self.in_planes = 16

        self.conv1 = MetaConv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = MetaBatchNorm2d(16)
        self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
        self.linear = MetaLinear(64, num_classes)

        self.apply(_weights_init)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion

        return nn.Sequential(*layers)

    def forward(self, x, epoch):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = F.avg_pool2d(out, out.size()[3])
        out = out.view(out.size(0), -1)
        y = self.linear(out)
        return out, y

# for main
class ResNet32(MetaModule):

    def __init__(self, num_classes, block=BasicBlock, num_blocks=[5, 5, 5, 5]):
        super(ResNet32, self).__init__()
        self.in_planes = 16

        self.conv1 = MetaConv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = MetaBatchNorm2d(16)
        self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 128, num_blocks[3], stride=2)

        # Add
        # print("Using self attention")
        # self.modulatedatt = ModulatedAttLayer(in_channels=64 * block.expansion)
        #
        #
        # self.cbam = CBAM(64 * block.expansion, 64)

        # self.scse1 = SCse(16*block.expansion)
        # self.scse2 = SCse(32*block.expansion)
        # self.scse3 = SCse(64*block.expansion)

        self.linear = MetaLinear(128, num_classes)

        self.apply(_weights_init)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion

        return nn.Sequential(*layers)

    def forward(self, x, epoch):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)

        out = self.layer4(out)


        out = F.avg_pool2d(out, out.size()[3])
        # out = F.avg_pool2d(out, kernel_size=(13, 18))
        out = out.view(out.size(0), -1)

        y = self.linear(out)
        return out, y


def to_var(x, requires_grad=True):
    if torch.cuda.is_available():
        x = x.cuda()
    return Variable(x, requires_grad=requires_grad)


def _weights_init(m):
    classname = m.__class__.__name__
    if isinstance(m, MetaLinear) or isinstance(m, MetaConv2d):
        init.kaiming_normal(m.weight)

image

相關文章