刨根問底(二):ThreadPoolExecutor
一、什麼是ThreadPoolExecutor
ThreadPoolExecutor是Java 1.5開始引入的,作為執行緒存放的集合池子——執行緒池,主要是為了解決:
- 重用執行緒資源,降低執行緒建立和銷燬的開銷;
- 集中維護和管理多個執行緒;
二、編碼體驗
JDK已經為我們封裝好了執行緒池的工具類Executors,提供了幾個便利的靜態方法,簡單列舉幾個;
- newFixedThreadPool:定長執行緒池;
- newSingleThreadExecutor:單執行緒的執行緒池;
- newCachedThreadPool:可快取的執行緒池;
- newScheduledThreadPool:可延遲執行或週期執行執行緒池;
這裡採用newFixedThreadPool作為例子,兩種執行緒池提交方式為例:
ExecutorService service = Executors.newFixedThreadPool(1);
service.submit(() -> System.out.println("submit提交,開啟多執行緒..."));
service.execute(() -> System.out.println("execute提交,開啟多執行緒..."));
這樣就建立了長度為1的執行緒池,並且分別用submit和execute兩種方式提交了任務,可以看出不需要我們手動new新的執行緒,也不需要我們手動start執行緒。
三、原始碼剖析
為什麼定義好了執行緒池submit或execute了任務就可以自動執行,jdk底層又是如何實現的呢?
根據上面Executors的幾個靜態方法(除了newScheduledThreadPool),最終都是指向ThreadPoolExecutor的構造方法:
1、構造方法
/**
* Creates a new {@code ThreadPoolExecutor} with the given initial
* parameters.
*
* @param corePoolSize the number of threads to keep in the pool, even
* if they are idle, unless {@code allowCoreThreadTimeOut} is set
* @param maximumPoolSize the maximum number of threads to allow in the
* pool
* @param keepAliveTime when the number of threads is greater than
* the core, this is the maximum time that excess idle threads
* will wait for new tasks before terminating.
* @param unit the time unit for the {@code keepAliveTime} argument
* @param workQueue the queue to use for holding tasks before they are
* executed. This queue will hold only the {@code Runnable}
* tasks submitted by the {@code execute} method.
* @param threadFactory the factory to use when the executor
* creates a new thread
* @param handler the handler to use when execution is blocked
* because the thread bounds and queue capacities are reached
* @throws IllegalArgumentException if one of the following holds:<br>
* {@code corePoolSize < 0}<br>
* {@code keepAliveTime < 0}<br>
* {@code maximumPoolSize <= 0}<br>
* {@code maximumPoolSize < corePoolSize}
* @throws NullPointerException if {@code workQueue}
* or {@code threadFactory} or {@code handler} is null
*/
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
構造方法的引數還是比較多的,根據原始碼註釋逐個分析:
corePoolSize
核心執行緒數,除非設定了allowCoreThreadTimeOut,否則需要保留在池中的執行緒數大小,即使這些執行緒處於空閒狀態;maximumPoolSize
允許執行緒池中最大的執行緒數量;keepAliveTime
當執行緒數量超過了核心執行緒數,多出閒置的執行緒在等待新任務的最長時間;unit
keepAliveTime的時間單位;workQueue
執行任務前用於儲存任務的佇列,該佇列僅僅包含提交的Runnable的任務;threadFactory
executor建立新執行緒使用的執行緒工廠;handler
執行緒池飽和處理策略;
構造方法具體只是做了引數非空校驗,以及全域性變數的初始化,接下來看看execute方法:
2、execute
/**
* Executes the given task sometime in the future. The task
* may execute in a new thread or in an existing pooled thread.
*
* If the task cannot be submitted for execution, either because this
* executor has been shutdown or because its capacity has been reached,
* the task is handled by the current {@code RejectedExecutionHandler}.
*
* @param command the task to execute
* @throws RejectedExecutionException at discretion of
* {@code RejectedExecutionHandler}, if the task
* cannot be accepted for execution
* @throws NullPointerException if {@code command} is null
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
原始碼註釋已經說明得很清楚,執行緒池工作流程分為3步:
- 如果當前執行緒池的執行緒數量小於corePoolSize,那麼嘗試新建一個執行緒執行該任務,會通過檢查當前狀態runState和執行緒池執行緒數量workerCount來進行原子操作addWorker,根據返回值決定操作成功與否;
- 否則檢查當前任務是否可以排隊(大於corePoolSize,小於maximumPoolSize),就算確認可以新增到workQueue中排隊等待,我們還是需要recheck重新檢查當先執行緒池狀態,可能由於之前的工作執行緒已經died或者當前執行緒池shutdown;
- 如果當前任務都無法排隊(等待佇列已滿),那麼嘗試新建一個執行緒執行該任務,如果仍然失敗(執行緒池數量大於maximumPoolSize),那麼執行拒絕策略reject;
執行邏輯還是比較複雜的,因為新增佇列、修改狀態均使用了無鎖原子操作,附以圖示:
ok,回到execute方法原始碼來,特別注意這個全域性變數ctl
,她便是執行緒池的資料核心。
3、ctl
/**
* The main pool control state, ctl, is an atomic integer packing
* two conceptual fields
* workerCount, indicating the effective number of threads
* runState, indicating whether running, shutting down etc
*
* In order to pack them into one int, we limit workerCount to
* (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
* billion) otherwise representable. If this is ever an issue in
* the future, the variable can be changed to be an AtomicLong,
* and the shift/mask constants below adjusted. But until the need
* arises, this code is a bit faster and simpler using an int.
*
* The workerCount is the number of workers that have been
* permitted to start and not permitted to stop. The value may be
* transiently different from the actual number of live threads,
* for example when a ThreadFactory fails to create a thread when
* asked, and when exiting threads are still performing
* bookkeeping before terminating. The user-visible pool size is
* reported as the current size of the workers set.
*
* The runState provides the main lifecycle control, taking on values:
*
* RUNNING: Accept new tasks and process queued tasks
* SHUTDOWN: Don't accept new tasks, but process queued tasks
* STOP: Don't accept new tasks, don't process queued tasks,
* and interrupt in-progress tasks
* TIDYING: All tasks have terminated, workerCount is zero,
* the thread transitioning to state TIDYING
* will run the terminated() hook method
* TERMINATED: terminated() has completed
*
* The numerical order among these values matters, to allow
* ordered comparisons. The runState monotonically increases over
* time, but need not hit each state. The transitions are:
*
* RUNNING -> SHUTDOWN
* On invocation of shutdown(), perhaps implicitly in finalize()
* (RUNNING or SHUTDOWN) -> STOP
* On invocation of shutdownNow()
* SHUTDOWN -> TIDYING
* When both queue and pool are empty
* STOP -> TIDYING
* When pool is empty
* TIDYING -> TERMINATED
* When the terminated() hook method has completed
*
* Threads waiting in awaitTermination() will return when the
* state reaches TERMINATED.
*
* Detecting the transition from SHUTDOWN to TIDYING is less
* straightforward than you'd like because the queue may become
* empty after non-empty and vice versa during SHUTDOWN state, but
* we can only terminate if, after seeing that it is empty, we see
* that workerCount is 0 (which sometimes entails a recheck -- see
* below).
*/
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
第一句話就概括了ctl,The main pool control state, ctl, is an atomic integer packing two conceptual fields,workerCount,runState。這個AtomicInteger型別的變數,儲存了工作執行緒數量和執行緒池狀態兩類資料,那麼是怎麼打包到一個變數中呢?
後面也有解釋說明,In order to pack them into one int, we limit workerCount to (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2 billion) otherwise representable,int型別為32位,低29位用於儲存workCount而不是全部位數,高3位便用於儲存runState。
先用二級製表示出CAPACITY的儲存:
0001 1111 1111 1111 1111 1111 1111 1111
然後舉個例子,一個RUNNING的執行緒池有5個工作執行緒,那麼用ctl來表示為:
1110 0000 0000 0000 0000 0000 0000 0101
再回來看runStateOf()
和workerCountOf()
、ctlOf()
三個方法,變得清晰多了。
既然已經清楚了ctl的工作原理,那麼回到execute原始碼,分析下新增任務addWorker方法原理。
4、addWorker
/*
* Methods for creating, running and cleaning up after workers
*/
/**
* Checks if a new worker can be added with respect to current
* pool state and the given bound (either core or maximum). If so,
* the worker count is adjusted accordingly, and, if possible, a
* new worker is created and started, running firstTask as its
* first task. This method returns false if the pool is stopped or
* eligible to shut down. It also returns false if the thread
* factory fails to create a thread when asked. If the thread
* creation fails, either due to the thread factory returning
* null, or due to an exception (typically OutOfMemoryError in
* Thread.start()), we roll back cleanly.
*
* @param firstTask the task the new thread should run first (or
* null if none). Workers are created with an initial first task
* (in method execute()) to bypass queuing when there are fewer
* than corePoolSize threads (in which case we always start one),
* or when the queue is full (in which case we must bypass queue).
* Initially idle threads are usually created via
* prestartCoreThread or to replace other dying workers.
*
* @param core if true use corePoolSize as bound, else
* maximumPoolSize. (A boolean indicator is used here rather than a
* value to ensure reads of fresh values after checking other pool
* state).
* @return true if successful
*/
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
原始碼有點長,但我還是全部貼出來了,方便後續整體回顧,細細品讀還是別有一番滋味,下面逐段分析下。
開頭定義了一個標籤retry,用於內層巢狀for迴圈的控制,然後是一段簡單的校驗邏輯,對當前執行緒池狀態、提交的任務及阻塞佇列進行校驗;
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
然後是無限迴圈CAS增加workerCount,很有意思的一段程式碼;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
當CAS執行成功,即break到開頭的retry標籤,進行後面的操作。否則的話,說明執行期間ctl發生了改變,那麼重新獲取ctl,並且判斷當前狀態是否改變。如果runState沒有改變繼續執行內層for迴圈,沒有必要執行外層迴圈初始化變數和引數校驗邏輯,如果改變了就continue到retry標籤,完全重來一次。
當CAS成功後,代表當前執行緒池workerCount已經增加了,那麼現在便需要建立新的執行緒來執行了:
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
注意這裡兩個finnaly,第一個是ReetrantLock的釋放,第二個是addWorker的校驗回滾,當出現執行緒池shutdown,或者是新建的執行緒非存活狀態,都需要回滾之前增加workerCount的操作,也就是之前CAS的操作,否則便start啟動建立的執行緒並初始化兩個bool標識位,附上addWorkerFailed的原始碼:
/**
* Rolls back the worker thread creation.
* - removes worker from workers, if present
* - decrements worker count
* - rechecks for termination, in case the existence of this
* worker was holding up termination
*/
private void addWorkerFailed(Worker w) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
if (w != null)
workers.remove(w);
decrementWorkerCount();
tryTerminate();
} finally {
mainLock.unlock();
}
}
有必要看下workers的定義了;
/**
* Set containing all worker threads in pool. Accessed only when
* holding mainLock.
*/
private final HashSet<Worker> workers = new HashSet<Worker>();
Set containing all worker threads in pool. Accessed only when holding mainLock.執行緒池中所有工作執行緒的集合,只有在持有mainLock鎖的情況下才能訪問該workers。這也就印證了每次對workers的操作,都需要獲取鎖mainLock.lock();
了。
5、Worker
/**
* Class Worker mainly maintains interrupt control state for
* threads running tasks, along with other minor bookkeeping.
* This class opportunistically extends AbstractQueuedSynchronizer
* to simplify acquiring and releasing a lock surrounding each
* task execution. This protects against interrupts that are
* intended to wake up a worker thread waiting for a task from
* instead interrupting a task being run. We implement a simple
* non-reentrant mutual exclusion lock rather than use
* ReentrantLock because we do not want worker tasks to be able to
* reacquire the lock when they invoke pool control methods like
* setCorePoolSize. Additionally, to suppress interrupts until
* the thread actually starts running tasks, we initialize lock
* state to a negative value, and clear it upon start (in
* runWorker).
*/
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
/** Initial task to run. Possibly null. */
Runnable firstTask;
/** Per-thread task counter */
volatile long completedTasks;
/**
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
// Lock methods
//
// The value 0 represents the unlocked state.
// The value 1 represents the locked state.
protected boolean isHeldExclusively() {
return getState() != 0;
}
protected boolean tryAcquire(int unused) {
if (compareAndSetState(0, 1)) {
setExclusiveOwnerThread(Thread.currentThread());
return true;
}
return false;
}
protected boolean tryRelease(int unused) {
setExclusiveOwnerThread(null);
setState(0);
return true;
}
public void lock() { acquire(1); }
public boolean tryLock() { return tryAcquire(1); }
public void unlock() { release(1); }
public boolean isLocked() { return isHeldExclusively(); }
void interruptIfStarted() {
Thread t;
if (getState() >= 0 && (t = thread) != null && !t.isInterrupted()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
}
}
}
}
可以看到Worker類是ThreadPoolExecutor的內部類,並且實現了Runnable介面,繼承自AbstractQueuedSynchronizer,仔細看她的構造方法,將自己的例項作為引數執行this.thread = getThreadFactory.newThread(this);
,所以結合之前的addWorker方法中,執行t.start();
,因此實際就是觸發的Worker的run方法也就是外層runWorker方法(ThreadPoolExecutor的方法);
理所當然,這個runWorker方法,才是執行緒池中執行緒執行的核心;
6、runWorker
/**
* Main worker run loop. Repeatedly gets tasks from queue and
* executes them, while coping with a number of issues:
*
* 1. We may start out with an initial task, in which case we
* don't need to get the first one. Otherwise, as long as pool is
* running, we get tasks from getTask. If it returns null then the
* worker exits due to changed pool state or configuration
* parameters. Other exits result from exception throws in
* external code, in which case completedAbruptly holds, which
* usually leads processWorkerExit to replace this thread.
*
* 2. Before running any task, the lock is acquired to prevent
* other pool interrupts while the task is executing, and then we
* ensure that unless pool is stopping, this thread does not have
* its interrupt set.
*
* 3. Each task run is preceded by a call to beforeExecute, which
* might throw an exception, in which case we cause thread to die
* (breaking loop with completedAbruptly true) without processing
* the task.
*
* 4. Assuming beforeExecute completes normally, we run the task,
* gathering any of its thrown exceptions to send to afterExecute.
* We separately handle RuntimeException, Error (both of which the
* specs guarantee that we trap) and arbitrary Throwables.
* Because we cannot rethrow Throwables within Runnable.run, we
* wrap them within Errors on the way out (to the thread's
* UncaughtExceptionHandler). Any thrown exception also
* conservatively causes thread to die.
*
* 5. After task.run completes, we call afterExecute, which may
* also throw an exception, which will also cause thread to
* die. According to JLS Sec 14.20, this exception is the one that
* will be in effect even if task.run throws.
*
* The net effect of the exception mechanics is that afterExecute
* and the thread's UncaughtExceptionHandler have as accurate
* information as we can provide about any problems encountered by
* user code.
*
* @param w the worker
*/
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
Main worker run loop. Repeatedly gets tasks from queue and executes them, while coping with a number of issues,主要Worker進行迴圈,重複從佇列中獲取task任務並執行她們,同時處理一些問題;
值得注意的是這裡task.run();
前後兩個處理方法beforeExecute(wt, task);
和afterExecute(task, thrown);
,都是兩個空的方法,方便我們自定義執行緒池進行擴充;
其實看到這裡還沒有涉及到等待佇列queue的資料互動,但是沒關係,結合前面execute方法的解析,也有個一知半解,這裡task執行完並不會結束該執行緒,而是會從queue中獲取等待的task,while (task != null || (task = getTask()) != null)
,第一個條件當然是worker本身的task任務,後面肯定是從佇列中獲取task了;
7、getTask
/**
* Performs blocking or timed wait for a task, depending on
* current configuration settings, or returns null if this worker
* must exit because of any of:
* 1. There are more than maximumPoolSize workers (due to
* a call to setMaximumPoolSize).
* 2. The pool is stopped.
* 3. The pool is shutdown and the queue is empty.
* 4. This worker timed out waiting for a task, and timed-out
* workers are subject to termination (that is,
* {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
* both before and after the timed wait, and if the queue is
* non-empty, this worker is not the last thread in the pool.
*
* @return task, or null if the worker must exit, in which case
* workerCount is decremented
*/
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
這裡有一行比較關鍵:
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
這個timed的值直接決定後面workQueue取值的方式,是採用poll還是take,區別便是前者具有佇列取值可以指定阻塞await時長,而後者一直阻塞await等待,貼一段LinkedBlockingQueue的poll的程式碼;
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
E x = null;
int c = -1;
long nanos = unit.toNanos(timeout);
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
takeLock.lockInterruptibly();
try {
while (count.get() == 0) {
if (nanos <= 0)
return null;
nanos = notEmpty.awaitNanos(nanos);
}
x = dequeue();
c = count.getAndDecrement();
if (c > 1)
notEmpty.signal();
} finally {
takeLock.unlock();
}
if (c == capacity)
signalNotFull();
return x;
}
注意到while迴圈體裡面的nanos = notEmpty.awaitNanos(nanos);
,結合之前timed的定義,就知道執行緒池裡面工作執行緒的生命週期了,當allowCoreThreadTimeOut || wc > corePoolSize
為true是,該執行緒會從workQueue中取值並指定等待時長即構造方法中的keepAliveTime,超過該時長還是取不到task的話,getTask返回null,結束runWorker的while迴圈,執行緒結束;
順便提及一句allowCoreThreadTimeOut預設是false,可以通過ThreadPoolExecutor的allowCoreThreadTimeOut方法修改預設值;
8、execute
分析到這裡,也就差不多弄清楚了execute方法的第一步,但也是最重要的一步,接著execute方法來看,後面就變得簡單多了,為了方便翻閱,重貼下execute方法(需要看原始碼註釋的往上翻 ↑);
public void execute(Runnable command) {
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
若當前workerCount已經超過了corePoolSize,那麼會執行到下面的入隊offer操作,offer的返回值說明是否入隊成功,取決於等待佇列workQueue是否容量已滿,然而Executors提供的好幾個靜態工廠生成的ThreadPoolExecutor的阻塞佇列,都是new LinkedBlockingQueue<Runnable>()
,貼下LinkedBlockingQueue的構造方法;
/**
* Creates a {@code LinkedBlockingQueue} with a capacity of
* {@link Integer#MAX_VALUE}.
*/
public LinkedBlockingQueue() {
this(Integer.MAX_VALUE);
}
/**
* Creates a {@code LinkedBlockingQueue} with the given (fixed) capacity.
*
* @param capacity the capacity of this queue
* @throws IllegalArgumentException if {@code capacity} is not greater
* than zero
*/
public LinkedBlockingQueue(int capacity) {
if (capacity <= 0) throw new IllegalArgumentException();
this.capacity = capacity;
last = head = new Node<E>(null);
}
預設容量是Integer.MAX_VALUE,也就是(2^31) - 1,所以這個預設阻塞佇列有點難滿,所以阿里Java規範也推薦手寫執行緒池構造引數,加深理解;
回到上面execute流程,入隊之後還做了一次recheck,這個recheck兩個條件非常有必要,一是判斷當前執行緒池狀態,而是判斷當前工作執行緒數是否為0,分別進行對應處理;
最後如果的確是佇列已滿,則繼續執行addWorker方法,區別是傳入的第二個引數為false,這個決定了workerCount的邊界,是corePoolSize還是maximumPoolSize,若仍然執行失敗則會進行reject處理,最後貼一下ThreadPoolExecutor預設的handler;
/**
* A handler for rejected tasks that throws a
* {@code RejectedExecutionException}.
*/
public static class AbortPolicy implements RejectedExecutionHandler {
/**
* Creates an {@code AbortPolicy}.
*/
public AbortPolicy() { }
/**
* Always throws RejectedExecutionException.
*
* @param r the runnable task requested to be executed
* @param e the executor attempting to execute this task
* @throws RejectedExecutionException always
*/
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
throw new RejectedExecutionException("Task " + r.toString() +
" rejected from " +
e.toString());
}
}
預設會丟擲一個異常,當然我們也可以實現這個RejectedExecutionHandler介面進行我們reject的自定義需求。
四、結束語
其實很早就想到要寫一篇執行緒池的原始碼分析,但由於各種原因寫到一半被擱置了很久。最近工作輕鬆不少,當我重新開始窺探Java的奧祕,還真的發自內心地感嘆起前輩們的思想,多麼的深邃遠見,自己積攢的不過是管中窺豹。
文章的編寫順序與自己翻閱原始碼的過程完全一致,就算一次性通讀全文,也不會感覺到太大的思想跳躍。而且本著刨根問底的思想,我儘可能地貼出對應完整的原始碼,不會因為相關注釋過長便落下。恰巧是這些原始碼中的註釋,才是我覺得理解原始碼的最好幫助。
相關文章
- ThreadLocal刨根問底thread
- 刨根問底KVO原理
- 刨根問底ajax原理與封裝封裝
- Java Thread的join() 之刨根問底Javathread
- iOS刨根問底-深入理解GCDiOSGC
- 刨根問底:物件也可以當方法用?物件
- 093【RTKLIB原始碼之postpos-9】刨根問底原始碼
- Java 如何實現優雅停服?刨根問底Java
- 刨根問底: Kafka 到底會不會丟資料?Kafka
- IOC和DI之刨根問底之第一節
- Kotlin刨根問底(一):你真的瞭解Kotlin中的空安全嗎?Kotlin
- foreach 集合又拋經典異常了,這次一定要刨根問底
- IM掃碼登入技術專題(四):你真的瞭解二維碼嗎?刨根問底、一文掌握!
- ThreadPoolExecutor原始碼解析(二)thread原始碼
- 黑曜石CEO:收購談判就像相親,你必須對對方刨根問底
- 【詳解】ThreadPoolExecutor原始碼閱讀(二)thread原始碼
- 刨根問底:if 後怎麼就可以跟物件了,變數交換寫法是語法糖嗎?物件變數
- 快速瞭解常用的對稱加密演算法,再也不用擔心面試官的刨根問底加密演算法面試
- 快速瞭解常用的訊息摘要演算法,再也不用擔心面試官的刨根問底演算法面試
- Java併發之ThreadPoolExecutor原始碼解析(二)Javathread原始碼
- 快速瞭解常用的非對稱加密演算法,再也不用擔心面試官的刨根問底加密演算法面試
- Jmeter(四十一) - 從入門到精通進階篇 - Jmeter配置檔案的刨根問底 - 下篇(詳解教程)JMeter
- Jmeter(四十二) - 從入門到精通進階篇 - Jmeter配置檔案的刨根問底 -番外篇(詳解教程)JMeter
- ThreadPoolExecutorthread
- 底層原理探究(二)RunLoopOOP
- 刨根問底 : 為什麼, unity 的 Y軸 使用 慣性座標系 旋轉, 原因是什麼,為什麼要這樣設計,理由Unity
- Java JUC ThreadPoolExecutor解析Javathread
- ThreadPoolExecutor原始碼分析thread原始碼
- 造輪子-ThreadPoolExecutorthread
- Java ThreadPoolExecutor詳解Javathread
- 併發-8-ThreadPoolExecutorthread
- ThreadPoolExecutor原始碼共讀thread原始碼
- java原始碼-ThreadPoolExecutor(2)Java原始碼thread
- ThreadPoolExecutor原始碼解析(一)thread原始碼
- python中ThreadPoolExecutor如何使用Pythonthread
- iOS底層原理(二):Runtime研究(一)iOS
- 二叉樹add底層原理二叉樹
- php底層原理之變數(二)PHP變數