給定n個字串s[n]和字串t,從中任選一對下標(i,j),要求i<=j,讓s[i]與s[j]連起來得到一個新的串,要求由新串刪除0個或多個字元可以得到t,問存在多少對滿足條件的下標對?
1<=n<=5e5; 1<=len(s[i]),len(t)<=5e5
假設由字串x能得到t的字首長度為a,字串y能得到t的字尾長度為b,如果a+b>=len(t),那麼由x+y一定能得到子序列t。計數那裡可以開cnt陣列統計,然後求字首和,這裡偷懶直接套平衡樹模板。
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define per(i,a,b) for(int i=b;i>=a;i--)
template <typename TYPE>
struct Treap {
struct Node {
TYPE data, sum;
int rnd, siz, dup, son[2];
void init(const TYPE & d) {
data = sum = d;
rnd = rand();
siz = dup = 1;
son[0] = son[1] = 0;
}
};
Treap(size_t sz, bool multi):multiple(multi) {
node.resize(sz);
reset();
}
int newnode(const TYPE & d) {
total += 1;
node[total].init(d);
return total;
}
void reset() { root = total = 0; }
void maintain(int x) {
node[x].siz = node[x].dup;
node[x].sum = node[x].data * node[x].dup;
if (node[x].son[0]) {
node[x].siz += node[node[x].son[0]].siz;
node[x].sum += node[node[x].son[0]].sum;
}
if (node[x].son[1]) {
node[x].siz += node[node[x].son[1]].siz;
node[x].sum += node[node[x].son[1]].sum;
}
}
void rotate(int d, int &r) {
int k = node[r].son[d^1];
node[r].son[d^1] = node[k].son[d];
node[k].son[d] = r;
maintain(r);
maintain(k);
r = k;
}
void insert(const TYPE &data, int &r, bool &ans) {
if (r) {
if (!(data < node[r].data) && !(node[r].data < data)) {
ans = false;
if (multiple) {
node[r].dup += 1;
maintain(r);
}
} else {
int d = data < node[r].data ? 0 : 1;
insert(data, node[r].son[d], ans);
if (node[node[r].son[d]].rnd > node[r].rnd) {
rotate(d^1, r);
} else {
maintain(r);
}
}
} else {
r = newnode(data);
}
}
void getkth(int k, int r, TYPE& data) {
int x = node[r].son[0] ? node[node[r].son[0]].siz : 0;
int y = node[r].dup;
if (k <= x) {
getkth(k, node[r].son[0], data);
} else if (k <= x + y) {
data = node[r].data;
} else {
getkth(k-x-y, node[r].son[1], data);
}
}
TYPE getksum(int k, int r) {
if (k <= 0 || r == 0) return 0;
int x = node[r].son[0] ? node[node[r].son[0]].siz : 0;
int y = node[r].dup;
if (k <= x) return getksum(k, node[r].son[0]);
if (k <= x+y) return node[node[r].son[0]].sum + node[r].data * (k-x);
return node[node[r].son[0]].sum + node[r].data * y + getksum(k-x-y,node[r].son[1]);
}
void erase(const TYPE& data, int & r) {
if (r == 0) return;
int d = -1;
if (data < node[r].data) {
d = 0;
} else if (node[r].data < data) {
d = 1;
}
if (d == -1) {
node[r].dup -= 1;
if (node[r].dup > 0) {
maintain(r);
} else {
if (node[r].son[0] == 0) {
r = node[r].son[1];
} else if (node[r].son[1] == 0) {
r = node[r].son[0];
} else {
int dd = node[node[r].son[0]].rnd > node[node[r].son[1]].rnd ? 1 : 0;
rotate(dd, r);
erase(data, node[r].son[dd]);
}
}
} else {
erase(data, node[r].son[d]);
}
if (r) maintain(r);
}
int ltcnt(const TYPE& data, int r) {
if (r == 0) return 0;
int x = node[r].son[0] ? node[node[r].son[0]].siz : 0;
if (data < node[r].data) {
return ltcnt(data, node[r].son[0]);
}
if (!(data < node[r].data) && !(node[r].data < data)) {
return x;
}
return x + node[r].dup + ltcnt(data, node[r].son[1]);
}
int gtcnt(const TYPE& data, int r) {
if (r == 0) return 0;
int x = node[r].son[1] ? node[node[r].son[1]].siz : 0;
if (data > node[r].data) {
return gtcnt(data, node[r].son[1]);
}
if (!(data < node[r].data) && !(node[r].data < data)) {
return x;
}
return x + node[r].dup + gtcnt(data, node[r].son[0]);
}
int count(const TYPE& data, int r) {
if (r == 0) return 0;
if (data < node[r].data) return count(data, node[r].son[0]);
if (node[r].data < data) return count(data, node[r].son[1]);
return node[r].dup;
}
void prev(const TYPE& data, int r, TYPE& result, bool& ret) {
if (r) {
if (node[r].data < data) {
if (ret) {
result = max(result, node[r].data);
} else {
result = node[r].data;
ret = true;
}
prev(data, node[r].son[1], result, ret);
} else {
prev(data, node[r].son[0], result, ret);
}
}
}
void next(const TYPE& data, int r, TYPE& result, bool& ret) {
if (r) {
if (data < node[r].data) {
if (ret) {
result = min(result, node[r].data);
} else {
result = node[r].data;
ret = true;
}
next(data, node[r].son[0], result, ret);
} else {
next(data, node[r].son[1], result, ret);
}
}
}
vector<Node> node;
int root, total;
bool multiple;
bool insert(const TYPE& data) {
bool ret = true;
insert(data, root, ret);
return ret;
}
bool kth(int k, TYPE &data) {
if (!root || k <= 0 || k > node[root].siz)
return false;
getkth(k, root, data);
return true;
}
TYPE ksum(int k) {
assert(root && k>0 && k<=node[root].siz);
return getksum(k, root);
}
int count(const TYPE &data) {
return count(data, root);
}
int size() const {
return root ? node[root].siz : 0;
}
void erase(const TYPE& data) {
return erase(data, root);
}
int ltcnt(const TYPE& data) {
return ltcnt(data, root);
}
int gtcnt(const TYPE& data) {
return gtcnt(data, root);
}
int lecnt(const TYPE& data) {
return size() - gtcnt(data, root);
}
int gecnt(const TYPE& data) {
return size() - ltcnt(data, root);
}
bool prev(const TYPE& data, TYPE& result) {
bool ret = false;
prev(data, root, result, ret);
return ret;
}
bool next(const TYPE& data, TYPE& result) {
bool ret = false;
next(data, root, result, ret);
return ret;
}
};
int getpre(const string &s, const string &t) {
int k = 0;
int ns = s.size(), nt = t.size();
for (int i = 0, j = 0; i < ns && j < nt; i++) {
if (s[i] == t[j]) {
j += 1;
k += 1;
}
}
return k;
}
int getsuf(const string &s, const string &t) {
int k = 0;
int ns = s.size(), nt = t.size();
for (int i = ns-1, j = nt-1; i >= 0 && j >= 0; i--) {
if (s[i] == t[j]) {
j -= 1;
k += 1;
}
}
return k;
}
const int N = 500005;
int n;
string T, S[N];
void solve() {
cin >> n >> T;
Treap<int> tp(N, true);
rep(i,1,n) {
cin >> S[i];
int pre = getpre(S[i], T);
tp.insert(pre);
}
int ans = 0;
rep(i,1,n) {
int suf = getsuf(S[i], T);
ans += tp.gecnt(T.size()-suf);
}
cout << ans << "\n";
}
signed main() {
cin.tie(0)->sync_with_stdio(0);
int t = 1;
while (t--) solve();
return 0;
}