Spark2 Dataset DataFrame空值null,NaN判斷和處理

智慧先行者發表於2016-10-29
import org.apache.spark.sql.SparkSession 
import org.apache.spark.sql.Dataset 
import org.apache.spark.sql.Row 
import org.apache.spark.sql.DataFrame 
import org.apache.spark.sql.Column 
import org.apache.spark.sql.DataFrameReader 
import org.apache.spark.rdd.RDD 
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder 
import org.apache.spark.sql.Encoder 
import org.apache.spark.sql.functions._
import org.apache.spark.sql.DataFrameStatFunctions 
import org.apache.spark.ml.linalg.Vectors 


math.sqrt(-1.0) 
res43: Double = NaN 
   
math.sqrt(-1.0).isNaN() 
res44: Boolean = true
  
  
val data1 = data.toDF("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating") 
data1: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] 
   
data1.limit(10).show 
+-------+------+---+------------+--------+-------------+---------+----------+------+ 
|affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating| 
+-------+------+---+------------+--------+-------------+---------+----------+------+ 
|      0|  male| 37|          10|      no|            3|       18|         7|     4| 
|      0|  null| 27|        null|      no|            4|       14|         6|  null| 
|      0|  null| 32|        null|     yes|            1|       12|         1|  null| 
|      0|  null| 57|        null|     yes|            5|       18|         6|  null| 
|      0|  null| 22|        null|      no|            2|       17|         6|  null| 
|      0|  null| 32|        null|      no|            2|       17|         5|  null| 
|      0|female| 22|        null|      no|            2|       12|         1|  null| 
|      0|  male| 57|          15|     yes|            2|       14|         4|     4| 
|      0|female| 32|          15|     yes|            4|       16|         1|     2| 
|      0|  male| 22|         1.5|      no|            4|       14|         4|     5| 
+-------+------+---+------------+--------+-------------+---------+----------+------+ 
   
 // 刪除所有列的空值和NaN 
val resNull=data1.na.drop() 
resNull: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] 
   
 resNull.limit(10).show() 
+-------+------+---+------------+--------+-------------+---------+----------+------+ 
|affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating| 
+-------+------+---+------------+--------+-------------+---------+----------+------+ 
|      0|  male| 37|          10|      no|            3|       18|         7|     4| 
|      0|  male| 57|          15|     yes|            2|       14|         4|     4| 
|      0|female| 32|          15|     yes|            4|       16|         1|     2| 
|      0|  male| 22|         1.5|      no|            4|       14|         4|     5| 
|      0|  male| 37|          15|     yes|            2|       20|         7|     2| 
|      0|  male| 27|           4|     yes|            4|       18|         6|     4| 
|      0|  male| 47|          15|     yes|            5|       17|         6|     4| 
|      0|female| 22|         1.5|      no|            2|       17|         5|     4| 
|      0|female| 27|           4|      no|            4|       14|         5|     4| 
|      0|female| 37|          15|     yes|            1|       17|         5|     5| 
+-------+------+---+------------+--------+-------------+---------+----------+------+ 
   
 //刪除某列的空值和NaN
val res=data1.na.drop(Array("gender","yearsmarried")) 

// 刪除某列的非空且非NaN的低於10的
data1.na.drop(10,Array("gender","yearsmarried")) 
   
   
 //填充所有空值的列 
val res123=data1.na.fill("wangxiao123") 
res123: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] 
   
 res123.limit(10).show() 
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+ 
|affairs|     gender|age|yearsmarried|children|religiousness|education|occupation|     rating| 
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+ 
|      0|       male| 37|          10|      no|            3|       18|         7|          4| 
|      0|wangxiao123| 27| wangxiao123|      no|            4|       14|         6|wangxiao123| 
|      0|wangxiao123| 32| wangxiao123|     yes|            1|       12|         1|wangxiao123| 
|      0|wangxiao123| 57| wangxiao123|     yes|            5|       18|         6|wangxiao123| 
|      0|wangxiao123| 22| wangxiao123|      no|            2|       17|         6|wangxiao123| 
|      0|wangxiao123| 32| wangxiao123|      no|            2|       17|         5|wangxiao123| 
|      0|     female| 22| wangxiao123|      no|            2|       12|         1|wangxiao123| 
|      0|       male| 57|          15|     yes|            2|       14|         4|          4| 
|      0|     female| 32|          15|     yes|            4|       16|         1|          2| 
|      0|       male| 22|         1.5|      no|            4|       14|         4|          5| 
+-------+-----------+---+------------+--------+-------------+---------+----------+-----------+ 
   
 //對指定的列空值填充 
 val res2=data1.na.fill(value="wangxiao111",cols=Array("gender","yearsmarried") ) 
res2: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] 
   
 res2.limit(10).show() 
+-------+-----------+---+------------+--------+-------------+---------+----------+------+ 
|affairs|     gender|age|yearsmarried|children|religiousness|education|occupation|rating| 
+-------+-----------+---+------------+--------+-------------+---------+----------+------+ 
|      0|       male| 37|          10|      no|            3|       18|         7|     4| 
|      0|wangxiao111| 27| wangxiao111|      no|            4|       14|         6|  null| 
|      0|wangxiao111| 32| wangxiao111|     yes|            1|       12|         1|  null| 
|      0|wangxiao111| 57| wangxiao111|     yes|            5|       18|         6|  null| 
|      0|wangxiao111| 22| wangxiao111|      no|            2|       17|         6|  null| 
|      0|wangxiao111| 32| wangxiao111|      no|            2|       17|         5|  null| 
|      0|     female| 22| wangxiao111|      no|            2|       12|         1|  null| 
|      0|       male| 57|          15|     yes|            2|       14|         4|     4| 
|      0|     female| 32|          15|     yes|            4|       16|         1|     2| 
|      0|       male| 22|         1.5|      no|            4|       14|         4|     5| 
+-------+-----------+---+------------+--------+-------------+---------+----------+------+ 
   
   
val res3=data1.na.fill(Map("gender"->"wangxiao222","yearsmarried"->"wangxiao567") ) 
res3: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] 
   
 res3.limit(10).show() 
+-------+-----------+---+------------+--------+-------------+---------+----------+------+ 
|affairs|     gender|age|yearsmarried|children|religiousness|education|occupation|rating| 
+-------+-----------+---+------------+--------+-------------+---------+----------+------+ 
|      0|       male| 37|          10|      no|            3|       18|         7|     4| 
|      0|wangxiao222| 27| wangxiao567|      no|            4|       14|         6|  null| 
|      0|wangxiao222| 32| wangxiao567|     yes|            1|       12|         1|  null| 
|      0|wangxiao222| 57| wangxiao567|     yes|            5|       18|         6|  null| 
|      0|wangxiao222| 22| wangxiao567|      no|            2|       17|         6|  null| 
|      0|wangxiao222| 32| wangxiao567|      no|            2|       17|         5|  null| 
|      0|     female| 22| wangxiao567|      no|            2|       12|         1|  null| 
|      0|       male| 57|          15|     yes|            2|       14|         4|     4| 
|      0|     female| 32|          15|     yes|            4|       16|         1|     2| 
|      0|       male| 22|         1.5|      no|            4|       14|         4|     5| 
+-------+-----------+---+------------+--------+-------------+---------+----------+------+ 
   
 //查詢空值列 
data1.filter("gender is null").select("gender").limit(10).show 
+------+ 
|gender| 
+------+ 
|  null| 
|  null| 
|  null| 
|  null| 
|  null| 
+------+ 
   
   
 data1.filter("gender is not null").select("gender").limit(10).show 
+------+ 
|gender| 
+------+ 
|  male| 
|female| 
|  male| 
|female| 
|  male| 
|  male| 
|  male| 
|  male| 
|female| 
|female| 
+------+ 
   
   
 data1.filter( data1("gender").isNull ).select("gender").limit(10).show 
+------+ 
|gender| 
+------+ 
|  null| 
|  null| 
|  null| 
|  null| 
|  null| 
+------+ 
   
   
 data1.filter("gender<>''").select("gender").limit(10).show 
+------+ 
|gender| 
+------+ 
|  male| 
|female| 
|  male| 
|female| 
|  male| 
|  male| 
|  male| 
|  male| 
|female| 
|female| 
+------+ 
   
   

 

 

相關文章