import org.apache.spark.sql.SparkSession import org.apache.spark.sql.Dataset import org.apache.spark.sql.Row import org.apache.spark.sql.DataFrame import org.apache.spark.sql.Column import org.apache.spark.sql.DataFrameReader import org.apache.spark.rdd.RDD import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder import org.apache.spark.sql.Encoder import org.apache.spark.sql.functions._ import org.apache.spark.sql.DataFrameStatFunctions import org.apache.spark.ml.linalg.Vectors math.sqrt(-1.0) res43: Double = NaN math.sqrt(-1.0).isNaN() res44: Boolean = true val data1 = data.toDF("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating") data1: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] data1.limit(10).show +-------+------+---+------------+--------+-------------+---------+----------+------+ |affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating| +-------+------+---+------------+--------+-------------+---------+----------+------+ | 0| male| 37| 10| no| 3| 18| 7| 4| | 0| null| 27| null| no| 4| 14| 6| null| | 0| null| 32| null| yes| 1| 12| 1| null| | 0| null| 57| null| yes| 5| 18| 6| null| | 0| null| 22| null| no| 2| 17| 6| null| | 0| null| 32| null| no| 2| 17| 5| null| | 0|female| 22| null| no| 2| 12| 1| null| | 0| male| 57| 15| yes| 2| 14| 4| 4| | 0|female| 32| 15| yes| 4| 16| 1| 2| | 0| male| 22| 1.5| no| 4| 14| 4| 5| +-------+------+---+------------+--------+-------------+---------+----------+------+ // 刪除所有列的空值和NaN val resNull=data1.na.drop() resNull: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] resNull.limit(10).show() +-------+------+---+------------+--------+-------------+---------+----------+------+ |affairs|gender|age|yearsmarried|children|religiousness|education|occupation|rating| +-------+------+---+------------+--------+-------------+---------+----------+------+ | 0| male| 37| 10| no| 3| 18| 7| 4| | 0| male| 57| 15| yes| 2| 14| 4| 4| | 0|female| 32| 15| yes| 4| 16| 1| 2| | 0| male| 22| 1.5| no| 4| 14| 4| 5| | 0| male| 37| 15| yes| 2| 20| 7| 2| | 0| male| 27| 4| yes| 4| 18| 6| 4| | 0| male| 47| 15| yes| 5| 17| 6| 4| | 0|female| 22| 1.5| no| 2| 17| 5| 4| | 0|female| 27| 4| no| 4| 14| 5| 4| | 0|female| 37| 15| yes| 1| 17| 5| 5| +-------+------+---+------------+--------+-------------+---------+----------+------+ //刪除某列的空值和NaN val res=data1.na.drop(Array("gender","yearsmarried")) // 刪除某列的非空且非NaN的低於10的 data1.na.drop(10,Array("gender","yearsmarried")) //填充所有空值的列 val res123=data1.na.fill("wangxiao123") res123: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] res123.limit(10).show() +-------+-----------+---+------------+--------+-------------+---------+----------+-----------+ |affairs| gender|age|yearsmarried|children|religiousness|education|occupation| rating| +-------+-----------+---+------------+--------+-------------+---------+----------+-----------+ | 0| male| 37| 10| no| 3| 18| 7| 4| | 0|wangxiao123| 27| wangxiao123| no| 4| 14| 6|wangxiao123| | 0|wangxiao123| 32| wangxiao123| yes| 1| 12| 1|wangxiao123| | 0|wangxiao123| 57| wangxiao123| yes| 5| 18| 6|wangxiao123| | 0|wangxiao123| 22| wangxiao123| no| 2| 17| 6|wangxiao123| | 0|wangxiao123| 32| wangxiao123| no| 2| 17| 5|wangxiao123| | 0| female| 22| wangxiao123| no| 2| 12| 1|wangxiao123| | 0| male| 57| 15| yes| 2| 14| 4| 4| | 0| female| 32| 15| yes| 4| 16| 1| 2| | 0| male| 22| 1.5| no| 4| 14| 4| 5| +-------+-----------+---+------------+--------+-------------+---------+----------+-----------+ //對指定的列空值填充 val res2=data1.na.fill(value="wangxiao111",cols=Array("gender","yearsmarried") ) res2: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] res2.limit(10).show() +-------+-----------+---+------------+--------+-------------+---------+----------+------+ |affairs| gender|age|yearsmarried|children|religiousness|education|occupation|rating| +-------+-----------+---+------------+--------+-------------+---------+----------+------+ | 0| male| 37| 10| no| 3| 18| 7| 4| | 0|wangxiao111| 27| wangxiao111| no| 4| 14| 6| null| | 0|wangxiao111| 32| wangxiao111| yes| 1| 12| 1| null| | 0|wangxiao111| 57| wangxiao111| yes| 5| 18| 6| null| | 0|wangxiao111| 22| wangxiao111| no| 2| 17| 6| null| | 0|wangxiao111| 32| wangxiao111| no| 2| 17| 5| null| | 0| female| 22| wangxiao111| no| 2| 12| 1| null| | 0| male| 57| 15| yes| 2| 14| 4| 4| | 0| female| 32| 15| yes| 4| 16| 1| 2| | 0| male| 22| 1.5| no| 4| 14| 4| 5| +-------+-----------+---+------------+--------+-------------+---------+----------+------+ val res3=data1.na.fill(Map("gender"->"wangxiao222","yearsmarried"->"wangxiao567") ) res3: org.apache.spark.sql.DataFrame = [affairs: string, gender: string ... 7 more fields] res3.limit(10).show() +-------+-----------+---+------------+--------+-------------+---------+----------+------+ |affairs| gender|age|yearsmarried|children|religiousness|education|occupation|rating| +-------+-----------+---+------------+--------+-------------+---------+----------+------+ | 0| male| 37| 10| no| 3| 18| 7| 4| | 0|wangxiao222| 27| wangxiao567| no| 4| 14| 6| null| | 0|wangxiao222| 32| wangxiao567| yes| 1| 12| 1| null| | 0|wangxiao222| 57| wangxiao567| yes| 5| 18| 6| null| | 0|wangxiao222| 22| wangxiao567| no| 2| 17| 6| null| | 0|wangxiao222| 32| wangxiao567| no| 2| 17| 5| null| | 0| female| 22| wangxiao567| no| 2| 12| 1| null| | 0| male| 57| 15| yes| 2| 14| 4| 4| | 0| female| 32| 15| yes| 4| 16| 1| 2| | 0| male| 22| 1.5| no| 4| 14| 4| 5| +-------+-----------+---+------------+--------+-------------+---------+----------+------+ //查詢空值列 data1.filter("gender is null").select("gender").limit(10).show +------+ |gender| +------+ | null| | null| | null| | null| | null| +------+ data1.filter("gender is not null").select("gender").limit(10).show +------+ |gender| +------+ | male| |female| | male| |female| | male| | male| | male| | male| |female| |female| +------+ data1.filter( data1("gender").isNull ).select("gender").limit(10).show +------+ |gender| +------+ | null| | null| | null| | null| | null| +------+ data1.filter("gender<>''").select("gender").limit(10).show +------+ |gender| +------+ | male| |female| | male| |female| | male| | male| | male| | male| |female| |female| +------+