TextAnalyzer
A text analyzer which is based on machine learning that can analyze text.
So far, it supports hot word extracting, text classification, part of speech tagging, named entity recognition, chinese word segment, extracting address, synonym, text clustering, word2vec model, edit distance, chinese word segment, sentence similarity.
Features
extracting hot words from a text.
- to gather statistics via frequence.
- to gather statistics via by tf-idf algorithm
- to gather statistics via a score factor additionally.
extracting address from a text.
synonym can be recognized
SVM Classificator
This analyzer supports to classify text by svm. it involves vectoring the text. We can train the samples and then make a classification by the model.
For convenience,the model,tfidf and vector will be stored.
kmeans clustering && xmeans clustering
This analyzer supports to clustering text by kmeans and xmeans.
vsm clustering
This analyzer supports to clustering text by vsm.
part of speech tagging
It's implemented by HMM model and decoder by viterbi algorithm.
google word2vec model
This analyzer supports to use word2vec model.
chinese word segment
This analyzer supports to do chinese word segment.
edit distance
This analyzer supports calculating edit distance on char level or word level.
sentence similarity
This analyzer supports calculating similarity between two sentences.
How To Use
just simple like this
Extracting Hot Words
- indexing a document and get a docId.
long docId = TextIndexer.index(text);
複製程式碼
- extracting by docId.
HotWordExtractor extractor = new HotWordExtractor();
List<Result> list = extractor.extract(0, 20, false);
if (list != null) for (Result s : list)
System.out.println(s.getTerm() + " : " + s.getFrequency() + " : " + s.getScore());
複製程式碼
a result contains term,frequency and score.
失業證 : 1 : 0.31436604
戶口 : 1 : 0.30099702
單位 : 1 : 0.29152703
提取 : 1 : 0.27927202
領取 : 1 : 0.27581802
職工 : 1 : 0.27381304
勞動 : 1 : 0.27370203
關係 : 1 : 0.27080503
本市 : 1 : 0.27080503
終止 : 1 : 0.27080503
複製程式碼
Extracting Address
String str ="xxxx";
AddressExtractor extractor = new AddressExtractor();
List<String> list = extractor.extract(str);
複製程式碼
SVM Classificator
- training the samples.
SVMTrainer trainer = new SVMTrainer();
trainer.train();
複製程式碼
- predicting text classification.
double[] data = trainer.getWordVector(text);
trainer.predict(data);
複製程式碼
Kmeans Clustering && Xmeans Clustering
List<String> list = DataReader.readContent(KMeansCluster.DATA_FILE);
int[] labels = new KMeansCluster().learn(list);
複製程式碼
VSM Clustering
List<String> list = DataReader.readContent(VSMCluster.DATA_FILE);
List<String> labels = new VSMCluster().learn(list);
複製程式碼
Part Of Speech Tagging
HMMModel model = new HMMModel();
model.train();
ViterbiDecoder decoder = new ViterbiDecoder(model);
decoder.decode(words);
複製程式碼
Define Your Own Named Entity
MITIE is an information extractor library comes up with MIT NLP term , which github is https://github.com/mit-nlp/MITIE .
train total_word_feature_extractor
Prepare your word set, you can put them into a txt file in the directory of 'data'.
And then do things below:
git clone https://github.com/mit-nlp/MITIE.git
cd tools
cd wordrep
mkdir build
cd build
cmake ..
cmake --build . --config Release
wordrep -e data
複製程式碼
Finally you get the total_word_feature_extractor model.
train ner_model
We can use Java\C++\Python to train the ner model, anyway we must use the total_word_feature_extractor model to train it.
if Java,
NerTrainer nerTrainer = new NerTrainer("model/mitie_model/total_word_feature_extractor.dat");
複製程式碼
if C++,
ner_trainer trainer("model/mitie_model/total_word_feature_extractor.dat");
複製程式碼
if Python,
trainer = ner_trainer("model/mitie_model/total_word_feature_extractor.dat")
複製程式碼
build shared library
Do commands below:
cd mitielib
D:\MITIE\mitielib>mkdir build
D:\MITIE\mitielib>cd build
D:\MITIE\mitielib\build>cmake ..
D:\MITIE\mitielib\build>cmake --build . --config Release --target install
複製程式碼
Then we get these below:
-- Install configuration: "Release"
-- Installing: D:/MITIE/mitielib/java/../javamitie.dll
-- Installing: D:/MITIE/mitielib/java/../javamitie.jar
-- Up-to-date: D:/MITIE/mitielib/java/../msvcp140.dll
-- Up-to-date: D:/MITIE/mitielib/java/../vcruntime140.dll
-- Up-to-date: D:/MITIE/mitielib/java/../concrt140.dll
複製程式碼
Word2vec
we must set the word2vec's path system parameter when startup,just like this -Dword2vec.path=D:\Google_word2vec_zhwiki1710_300d.bin
.
Word2Vec vec = Word2Vec.getInstance();
System.out.println("狗|貓: " + vec.wordSimilarity("狗", "貓"));
複製程式碼
Segment
DictSegment segment = new DictSegment();
System.out.println(segment.seg("我是中國人"));
複製程式碼
Edit Distance
char level,
CharEditDistance cdd = new CharEditDistance();
cdd.getEditDistance("what", "where");
cdd.getEditDistance("我們是中國人", "他們是日本人吖,四貴子");
cdd.getEditDistance("是我", "我是");
複製程式碼
word level,
List list1 = new ArrayList<String>();
list1.add(new EditBlock("計算機",""));
list1.add(new EditBlock("多少",""));
list1.add(new EditBlock("錢",""));
List list2 = new ArrayList<String>();
list2.add(new EditBlock("電腦",""));
list2.add(new EditBlock("多少",""));
list2.add(new EditBlock("錢",""));
ed.getEditDistance(list1, list2);
複製程式碼
Sentence Similarity
String s1 = "我們是中國人";
String s2 = "他們是日本人,四貴子";
SentenceSimilarity ss = new SentenceSimilarity();
System.out.println(ss.getSimilarity(s1, s2));
s1 = "我們是中國人";
s2 = "我們是中國人";
System.out.println(ss.getSimilarity(s1, s2));
複製程式碼
-------------推薦閱讀------------
跟我交流,向我提問:
公眾號的選單已分為“讀書總結”、“分散式”、“機器學習”、“深度學習”、“NLP”、“Java深度”、“Java併發核心”、“JDK原始碼”、“Tomcat核心”等,可能有一款適合你的胃口。
歡迎關注: