斜率最佳化入門

ChiFAN鴨發表於2023-04-10

前言

斜率最佳化是一種經典的單調佇列最佳化型別,雖然它的名字很高大上,但是其思想核心非常簡單,這篇部落格就是用來幫助各位快速入門的

提示:本部落格以單調佇列的思想理解斜率最佳化

引入

dp 最佳化可以怎麼分類?

  1. 資料結構維護決策點集的插入與查詢

  2. 演演算法維護決策點集大小,取出無用決策點

而斜率最佳化 dp 屬於第二者,且常常用於最佳化序列分割問題

Q1

P3195

A1

先列出一個樸素的 dp 方程:

\(dp_i = min(dp_j+(pre[i]+i-pre[j]-j-L-1)^2)\)

然後我們考慮決策點 \(j,k\) 滿足 \(k<j\)\(j\) 優於 \(k\)

那麼有:

\(dp_j + (pre[i]+i-L-1)^2 + (pre[j]+j)^2 - 2 \times (pre[i]+i-L-1) \times (pre[j]+j) < dp_k + (pre[i]+i-L-1)^2 + (pre[k]+k)^2 - 2 \times (pre[i]+i-L-1) \times (pre[k]+k)\)

\(dp_j + (pre[j]+j)^2 - 2 \times (pre[i]+i-L-1) \times (pre[j]+j) < dp_k + (pre[k]+k)^2 - 2 \times (pre[i]+i-L-1) \times (pre[k]+k)\)

\(dp_j + (pre[j]+j)^2 - dp_k + (pre[k]+k)^2 < 2 \times (pre[i]+i-L-1) \times (pre[j]+j) - 2 \times (pre[i]+i-L-1) \times (pre[k]+k)\)

\(2 \times (pre[i]+i-L-1) \times((pre[j]+j) -(pre[k]+k)) > dp_j + (pre[j]+j)^2 - dp_k + (pre[k]+k)^2\)

然後我們發現這個等式兩邊全部具有單調性,所以就可以用單調佇列維護最優答案

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 1e6+114;
int sum[maxn],q[maxn];
int dp[maxn];
int n,L;
int top(int j,int k){
	return (sum[j]+j)*(sum[j]+j)+dp[j]-(sum[k]+k)*(sum[k]+k)-dp[k];
}
int down(int j,int k){
	return sum[j]+j-sum[k]-k;
} 
signed main(){
	cin>>n>>L;
	for(int i=1;i<=n;i++) cin>>sum[i];
	sum[0]=dp[0]=0;
	int l=1,r=0;
	q[++r]=0;
	for(int i=1;i<=n;i++) sum[i]+=sum[i-1];
	for(int i=1;i<=n;i++){
		while(l+1<=r&&2*(i+sum[i]-1-L)*down(q[l+1],q[l])>=top(q[l+1],q[l])) l++;
		dp[i]=dp[q[l]]+(i-q[l]-1+sum[i]-sum[q[l]]-L)*(i-q[l]-1+sum[i]-sum[q[l]]-L); 
		while(l+1<=r&&top(i,q[r])*down(q[r],q[r-1])<=top(q[r],q[r-1])*down(i,q[r])) r--;
		q[++r]=i;
	}
	cout<<dp[n];
}

Q2

P3628

A2

\(dp_i=dp_j+(pre_i-pre_j)^2 \times a+(pre_i-pre_j) \times b+c\)

對於決策點 \(j,k\)\(k<j\)\(j\) 優於 \(k\)

\(dp_j+(pre_i-pre_j)^2 \times a+(pre_i-pre_j) \times b+c>dp_k+(pre_i-pre_k)^2 \times a+(pre_i-pre_k) \times b+c\)

\(dp_j+(pre_i-pre_j)^2 \times a+(pre_i-pre_j) \times b>dp_k+(pre_i-pre_k)^2 \times a+(pre_i-pre_k) \times b\)

\(dp_j+(pre_i^2+pre_j^2-2 \times pre_i \times pre_j) \times a+pre_i \times b-pre_j \times b\)

\(dp_j+a \times pre_i^2+a \times pre_j^2-2a \times pre_i \times pre_j+pre_i \times b-pre_j \times b\)

\(dp_j+a \times pre_j^2-2a \times pre_i \times pre_j-pre_j \times b>dp_k+a \times pre_k^2-2a \times pre_i \times pre_k-pre_k \times b\)

\(dp_j+a \times pre_j^2-dp_k-a \times pre_k^2+pre_k \times b-pre_j \times b>2a \times pre_i \times pre_j-2a \times pre_i \times pre_k\)

\(2a \times pre_i \times pre_j-2a \times pre_i \times pre_k<dp_j+a \times pre_j^2-dp_k-a \times pre_k^2+pre_k \times b-pre_j \times b\)

\(2a \times pre_i \times (pre_j-pre_k)<dp_j-dp_k+a \times pre_j^2-a \times pre_k^2+pre_k \times b-pre_j \times b\)

\(2a \times pre_i<(dp_j-dp_k+a \times pre_j^2-a \times pre_k^2+pre_k \times b-pre_j \times b)/(pre_j-pre_k)\)

兩邊同樣具有單調性。

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 1e6+114;
int sum[maxn],q[maxn];
int dp[maxn];
int n,m,a,b,c;
int top(int i,int j){
	return dp[i]-dp[j]+a*sum[i]*sum[i]-a*sum[j]*sum[j]+sum[j]*b-sum[i]*b;
}
int down(int i,int j){
	return sum[i]-sum[j];
}
signed main(){
		cin>>n;
		cin>>a>>b>>c; 
		for(int i=1;i<=n;i++) cin>>sum[i];
		sum[0]=dp[0]=0;
		int l=1,r=0;
		q[++r]=0;
		for(int i=1;i<=n;i++) sum[i]+=sum[i-1];
		for(int i=1;i<=n;i++){
			while(l+1<=r&&2*a*sum[i]*down(q[l+1],q[l])<top(q[l+1],q[l])) l++;
			dp[i]=dp[q[l]]+(sum[i]-sum[q[l]])*(sum[i]-sum[q[l]])*a+(sum[i]-sum[q[l]])*b+c; 
			//val(r,i) < val(r-1,r) r-- 
			while(l+1<=r&&top(i,q[r])*down(q[r],q[r-1])>=top(q[r],q[r-1])*down(i,q[r])) r--;
			q[++r]=i;
		}
		cout<<dp[n];
}

Q3

P2900

A3

先把所有土地按照長度排序,各位讀者請自行證明排序後最優方案下總是取連續的土地,因而可以轉化為序列分割類問題

\(dp_i=dp_j+ \max(j+1,i)(b_i) \times a_i\)

對於決策點 \(j,k\)\(k<j\)\(j\) 優於 \(k\)

\(dp_j+ \max(j+1,i)(b_i) \times a_i<dp_k+ \max(k+1,i)(b_i) \times a_i\)

$ \max(j+1,i)(b_i) \times a_i- \max(k+1,i)(b_i) \times a_i<dp_k-dp_j$

\(a_i \times ( \max(j+1,i)(b_i)- \max(k+1,i)(b_i))<dp_k-dp_j\)

\(a_i<(dp_k-dp_j)/( \max(j+1,i)(b_i)- \max(k+1,i)(b_i))\)

額外用一個線段樹維護 \(\max\) 函式即可。

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 1e6+114;
int q[maxn];
int dp[maxn];
struct Node{
	int a,b;
}chifan[maxn];
int tree[maxn*4];
void pushup(int cur){
	tree[cur]=max(tree[cur*2],tree[cur*2+1]); 
}
void build(int cur,int l,int r){
	if(l==r){
		tree[cur]=chifan[l].b;
		return;
	}
	int mid=(l+r)/2;
	build(cur*2,l,mid);
	build(cur*2+1,mid+1,r);
	pushup(cur);
}
int ask(int cur,int lt,int rt,int l,int r){
	if(rt<l||r<lt){
		return 0;
	}
	if(l<=lt&&rt<=r){
		return tree[cur];
	}
	int mid=(lt+rt)/2;
	int sum=0;
	sum=max(sum,ask(cur*2,lt,mid,l,r));
	sum=max(sum,ask(cur*2+1,mid+1,rt,l,r));
	return sum;
}
bool cmp(Node A,Node B){
	return A.a<B.a; 
}
int n;

int top(int j,int k){
	return dp[k]-dp[j];
}
int down(int i,int j,int k){
	return ask(1,1,n,j+1,i)-ask(1,1,n,k+1,i);
}
signed main(){
		cin>>n;
		for(int i=1;i<=n;i++) cin>>chifan[i].a>>chifan[i].b;
		sort(chifan+1,chifan+n+1,cmp);
		build(1,1,n);
		dp[0]=0;
		int l=1,r=0;
		q[++r]=0;
		for(int i=1;i<=n;i++){
			while(l+1<=r&&chifan[i].a*down(i,q[l+1],q[l])<top(q[l+1],q[l])) l++;
			dp[i]=dp[q[l]]+ask(1,1,n,q[l]+1,n)*chifan[i].a; 
			while(l+1<=r&&top(i,q[r])*down(n,q[r],q[r-1])<=top(q[r],q[r-1])*down(n,i,q[r])) r--;
			q[++r]=i;
		}
		cout<<dp[n];		
}

Q4

P2120

A4

\(dp_i=dp_j+(\sum_{k=j+1}^{i} p_k \times (x_i-x_k))+c_i\)

\(dp_i=dp_j+(\sum_{k=j+1}^{i} p_k \times x_i-p_k \times x_k)+c_i\)

\(dp_i=dp_j+(\sum_{k=j+1}^{i} p_k \times x_i)-(\sum_{k=j+1}^{i} p_k \times x_k)+c_i\)

\(dp_i=dp_j+x_i \times (\sum_{k=j+1}^{i} p_k)-(\sum_{k=j+1}^{i} p_k \times x_k)+c_i\)

令 $chifan_i=\sum_{j=1}^{i} p_j \times x_j $ 以及 \(pre_i=\sum_{j=1}^{i} p_j\)

\(dp_i=dp_j+x_i \times (pre_i-pre_j)-(chifan_i-chifan_j)+c_i\)

對於決策點 \(j,k\)\(k<j\)\(j\) 優於 \(k\)

\(dp_j+x_i \times (pre_i-pre_j)-(chifan_i-chifan_j)+c_i<dp_k+x_i \times (pre_i-pre_k)-(chifan_i-chifan_k)+c_i\)

\(dp_j-pre_j \times x_i+chifan_j<dp_k-pre_k \times x_i+chifan_k\)

\(dp_j+chifan_j-chifan_k-dp_k<pre_j \times x_i-pre_k \times x_i\)

\(x_i \times (pre_j-pre_k)>(dp_j-dp_k+chifan_j-chifan_k)\)

\(x_i>(dp_j-dp_k+chifan_j-chifan_k)/(pre_j-pre_k)\)

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int maxn = 1e6+114;
int sum[maxn],q[maxn];
int chifan[maxn],c[maxn],p[maxn],x[maxn];
int dp[maxn];
int n,m;
int top(int j,int k){
	return dp[j]-dp[k]+chifan[j]-chifan[k];
}
int down(int j,int k){
	return sum[j]-sum[k];
}
void init(){
	for(int i=1;i<=n;i++){
		sum[i]=sum[i-1]+p[i]; 
	}
	for(int i=1;i<=n;i++){
		chifan[i]=chifan[i-1]+p[i]*x[i];
	}
} 
signed main(){
		cin>>n;
		for(int i=1;i<=n;i++) cin>>x[i]>>p[i]>>c[i];
		init();
		dp[0]=0;
		int l=1,r=0;
		q[++r]=0;
		for(int i=1;i<=n;i++){
			while(l+1<=r&&x[i]*down(q[l+1],q[l])>top(q[l+1],q[l])) l++;
			dp[i]=dp[q[l]]+x[i]*(sum[i]-sum[q[l]])-(chifan[i]-chifan[q[l]])+c[i];
			while(l+1<=r&&top(i,q[r])*down(q[r],q[r-1])<=top(q[r],q[r-1])*down(i,q[r])) r--;
			q[++r]=i;
		}
		if(p[n]==0) dp[n]-=c[n];
		cout<<dp[n];
		return 0;
}

總結

一般來說,為了兼顧單調性以及不被貪心暴踩,斜率最佳化 dp 帶有一個平方項

不過只要對於決策點 \(j,k\)\(k<j\) 能表述成 \(f(i) > g(j,k)\) (\(g(j,k)\) 常常為斜率的形式,因此叫做斜率最佳化)且兩邊單調的形式,都可以斜率最佳化,不過有時候這個式子更為靈活,需要變通

相關文章