DAPP智慧合約LP流動性質押挖礦分紅系統開發詳細及功能丨原始碼案例

xiaofufu發表於2023-04-04

  The two main uses of quantitative trading robots are to make markets through arbitrage;When the market is relatively cold,act as the corresponding seller or buyer,and activate trading volume in the market;After initializing the setting parameters,the quantitative trading robot will trade according to the strategy,automatically buying or selling when the set conditions are met,without the need for long-term trading;Strictly implement trading strategies based on the new market situation;Real time viewing of transaction conditions to ensure real-time execution of transactions;Try to avoid adverse effects caused by human subjective factors as much as possible.


  關於區塊鏈專案技術開發唯:MrsFu123,代幣發行、dapp智慧合約開發、鏈遊開發、單雙幣質押、多鏈錢包開發、NFT盲盒遊戲、公鏈、鏈上游戲開發


  Uniswap博餅、交易所開發、量化合約開發、合約對沖、互助遊戲開發、Nft數字藏品開發、眾籌互助開發、元宇宙開發、swap開發、DAO智慧合約、


  夾子合約、鏈上合約開發、ido開發、商城開發等,開發過各種各樣的系統模式,更有多種模式、制度、案例、後臺等,成熟技術團隊,歡迎實體參考。


  量化策略是指使用計算機作為工具,透過一套固定的邏輯來分析、判斷和決策。量


  化策略既可以自動執行,也可以人工執行;開發策略及詳情唯:MrsFu123,從本質上說,交易機器人是一種軟體程式,它直接與金融交易所進行互動(通常使用API獲取和解釋相關資訊),並根據市場資料的解釋發出買賣訂單。


  這是一個PPQ量化的入口指令碼,將你的模型和資料按要求進行打包:


  This file will show you how to quantize your network with PPQ


  You should prepare your model and calibration dataset as follow:


  ~/working/model.onnx<--your model


  ~/working/data/*.npy or~/working/data/*.bin<--your dataset


  if you are using caffe model:


  ~/working/model.caffemdoel<--your model


  ~/working/model.prototext<--your model


  ###MAKE SURE YOUR INPUT LAYOUT IS[N,C,H,W]or[C,H,W]###


  quantized model will be generated at:~/working/quantized.onnx


  """


  from ppq import*


  from ppq.api import*


  import os


  #modify configuration below:


  WORKING_DIRECTORY='working'#choose your working directory


  TARGET_PLATFORM=TargetPlatform.PPL_CUDA_INT8#choose your target platform


  MODEL_TYPE=NetworkFramework.ONNX#or NetworkFramework.CAFFE


  INPUT_LAYOUT='chw'#input data layout,chw or hwc


  NETWORK_INPUTSHAPE=[1,3,224,224]#input shape of your network


  CALIBRATION_BATCHSIZE=16#batchsize of calibration dataset


  EXECUTING_DEVICE='cuda'#'cuda'or'cpu'.


  REQUIRE_ANALYSE=False


  DUMP_RESULT=False#是否需要Finetuning一下你的網路


  #SETTING物件用於控制PPQ的量化邏輯


  #當你的網路量化誤差過高時,你需要修改SETTING物件中的引數進行特定的最佳化


  SETTING=UnbelievableUserFriendlyQuantizationSetting(


  platform=TARGET_PLATFORM,finetune_steps=2500,


  finetune_lr=1e-3,calibration='kl',#【改】量化演演算法可選'kl','pecentile','mse'


  equalization=True,non_quantable_op=None)


  SETTING=SETTING.convert_to_daddy_setting()


  print('正準備量化你的網路,檢查下列設定:')


  print(f'WORKING DIRECTORY:{WORKING_DIRECTORY}')


  print(f'TARGET PLATFORM:{TARGET_PLATFORM.name}')


  print(f'NETWORK INPUTSHAPE:{NETWORK_INPUTSHAPE}')


  print(f'CALIBRATION BATCHSIZE:{CALIBRATION_BATCHSIZE}')


  #此指令碼針對單輸入模型,輸入資料必須是影像資料layout:[n,c,h,w]


  #如果你的模型具有更復雜的輸入格式,你可以重寫下面的load_calibration_dataset函式


  #請注意,任何可遍歷物件都可以作為PPQ的資料集作為輸入


  dataloader=load_calibration_dataset(


  directory=WORKING_DIRECTORY,


  input_shape=NETWORK_INPUTSHAPE,


  batchsize=CALIBRATION_BATCHSIZE,


  input_format=INPUT_LAYOUT)


  print('網路正量化中,根據你的量化配置,這將需要一段時間:')


  quantized=quantize(


  working_directory=WORKING_DIRECTORY,setting=SETTING,


  model_type=MODEL_TYPE,executing_device=EXECUTING_DEVICE,


  input_shape=NETWORK_INPUTSHAPE,target_platform=TARGET_PLATFORM,


  dataloader=dataloader,calib_steps=32)


來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69956839/viewspace-2943779/,如需轉載,請註明出處,否則將追究法律責任。

相關文章