cost量化分析

帶你聊技術發表於2023-03-08

* GreatSQL使


前言:

我們在日常維護資料庫的時候,經常會遇到查詢慢的語句,這時候一般會透過執行EXPLAIN去檢視它的執行計劃,但是執行計劃往往只給我們帶來了最基礎的分析資訊,比如是否有使用索引,還有一些其他供我們分析的資訊,比如使用了臨時表、排序等等,卻無法展示為什麼一些其他的執行計劃未被選擇,比如說明明有索引,或者好幾個索引,但是為什麼查詢時未使用到期望的索引等

explain select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20;
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+
| id | select_type | table | partitions | type   | possible_keys                        | key           | key_len | ref            | rows | filtered | Extra                 |
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+
|  1 | SIMPLE      | t2    | NULL       | range  | id_num_unique,idx_age,idx_age_id_num | idx_age       | 1       | NULL           | 9594 |   100.00 | Using index condition |
|  1 | SIMPLE      | t1    | NULL       | eq_ref | id_num_unique,idx_age                | id_num_unique | 60      | test.t2.id_num |    1 |    50.00 | Using where           |
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+
2 rows in set, 1 warning (0.01 sec)

如上面這個例子,為什麼t2表上列出了多個可能使用的索引,卻選擇了idx_age,最佳化器為什麼選擇了指定的索引,這時候並不能直觀的看出問題,這時候我們就可以開啟optimizer_trace跟蹤分析MySQL具體是怎麼選擇出最優的執行計劃的。

OPTIMIZER_TRACE:

optimizer_trace是什麼:

optimizer_trace是一個具有跟蹤功能的工具,可以跟蹤執行的語句的解析最佳化執行過程,並將跟蹤到的資訊記錄到INFORMATION_SCHEMA.OPTIMIZER_TRACE表中,但是每個會話都只能跟蹤它自己執行的語句,並且表中預設只記錄最後一個查詢的跟蹤結果

使用方法:

# 開啟optimizer trace功能 (預設情況下它是關閉的):
set optimizer_trace="enabled=on";
select ...; # 這裡輸入你自己的查詢語句
SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACE;
# 當你停止檢視語句的最佳化過程時,把optimizer trace功能關閉
set optimizer_trace="enabled=off";

相關引數:

mysql>  show variables like '%optimizer_trace%';
+------------------------------+----------------------------------------------------------------------------+
| Variable_name                | Value                                                                      |
+------------------------------+----------------------------------------------------------------------------+
| optimizer_trace              | enabled=on,one_line=off                                                    |
| optimizer_trace_features     | greedy_search=on,range_optimizer=on,dynamic_range=on,repeated_subselect=on |
| optimizer_trace_limit        | 1                                                                          |
| optimizer_trace_max_mem_size | 1048576                                                                    |
| optimizer_trace_offset       | -1                                                                         |
+------------------------------+----------------------------------------------------------------------------+
  • optimizer_trace: enabled 開啟/關閉optimizer_trace,one_line 是否單行顯示,關閉為json模式,一般不開啟
  • optimizer_trace_features:跟蹤資訊中可列印的項,一般不調整預設列印所有項
  • optimizer_trace_limit:儲存的跟蹤sql條數
  • optimizer_trace_offset:開始記錄的sql語句的偏移量,負數表示從最近執行倒數第幾條開始記錄
  • optimizer_trace_max_mem_size:optimizer_trace記憶體的大小,如果跟蹤資訊超過這個大小,資訊將會被截斷

optimizer_trace表資訊:

該表總共有4個欄位

  • QUERY 表示我們的查詢語句。
  • TRACE 表示最佳化過程的JSON格式文字。(重點關注)
  • MISSING_BYTES_BEYOND_MAX_MEM_SIZE 由於最佳化過程可能會輸出很多,如果超過某個限制時,多餘的文字將不會被顯示,這個欄位展示了被忽略的文字位元組數。
  • INSUFFICIENT_PRIVILEGES 表示是否沒有許可權檢視最佳化過程,預設值是0,只有某些特殊情況下才會是 1,我們暫時不關心這個欄位的值。

資訊解讀:

透過 optimizer_trace表的query欄位可以看到,一條語句的執行過程主要分為三個步驟:

"join_preparation": {},(準備階段)
"join_optimization": {},(最佳化階段)
"join_execution": {},(執行階段)

各個步驟的詳細內容解讀:

  • preparation:
expanded_query :將語句進行格式化,補充隱藏的列名和表名等
transformations_to_nested_joins :查詢重寫,比如join的on改為where語句
  • optimization:
condition_processing{ :條件句處理。
    transformation{:轉換型別句。這三次的轉換分別是
        equality_propagation(等值條件句轉換),如:a = b and b = c and c = 5
        constant_propagation(常量條件句轉換),如:a = 1 AND b > a
        trivial_condition_removal(無效條件移除的轉換),如:1 = 1
    }
}
substitute_generated_columns :替換虛擬生成列,測試了很多sql,這一列都沒有看到有用的資訊
table_dependencies :梳理表之間的依賴關係。
ref_optimizer_key_uses :如果最佳化器認為查詢可以使用ref的話,在這裡列出可以使用的索引。
rows_estimation{ :估算錶行數和掃描的代價。如果查詢中存在range掃描的話,對range掃描進行計劃分析及代價估算。
  table_scan:全表掃描的行數(rows)以及所需要的代價(cost)。
  potential_range_indexes:該階段會列出表中所有的索引並分析其是否可用,並且還會列出索引中可用的列欄位。
  analyzing_range_alternatives :分析可選方案的代價。
}
considered_execution_plans{ :對比各可行計劃的代價,選擇相對最優的執行計劃。
  plan_prefix:前置的執行計劃。
  best_access_path:當前最優的執行順序資訊結果集。
  access_type表示使用索引的方式,可參照為explain中的type欄位。
  condition_filtering_pct:類似於explain中的filtered列,這是一個估算值。
  rows_for_plan:該執行計劃最終的掃描行數,這裡的行數其實也是估算值,是由considered_access_paths的resulting_rows相乘之後再乘以condition_filtering_pct獲得。
  cost_for_plan:該執行計劃的執行代價,由considered_access_paths的cost相加而得。
  chosen:是否選擇了該執行計劃。
}
attaching_conditions_to_tables :新增附加條件,使得條件儘可能篩選單表資料。
refine_plan :最佳化後的執行計劃。

trace資訊中的json資訊很長,因為我們關心的是不同執行計劃的cost區別,所以只需要重點關注兩個部分rows_estimation 和considered_execution_plans

代價模型計算:

統計資訊和cost計算引數:

計算cost會涉及到表的主鍵索引資料頁(聚簇索引)數量和表中的記錄數,兩個資訊都可以透過innodb的表統計資訊mysql.innodb_table_stats查到,n_rows是記錄數,clustered_index_size是聚簇索引頁數。

mysql> select * from mysql.innodb_table_stats where table_name='basic_person_info';
+---------------+-------------------+---------------------+--------+----------------------+--------------------------+
| database_name | table_name        | last_update         | n_rows | clustered_index_size | sum_of_other_index_sizes |
+---------------+-------------------+---------------------+--------+----------------------+--------------------------+
test          | basic_person_info | 2022-12-23 18:27:24 |  86632 |                  737 |                     1401 |
+---------------+-------------------+---------------------+--------+----------------------+--------------------------+
1 row in set (0.01 sec)

代價模型將操作分為Server層和Engine(儲存引擎)層兩類,Server層主要是CPU代價,Engine層主要是IO代價,比如MySQL從磁碟讀取一個資料頁的代價io_block_read_cost為1,從buffer pool讀取的代價memory_block_read_cost為0.25,計算符合條件的行代價為row_evaluate_cost為0.1,除此之外還有:

  • memory_temptable_create_cost (default 1.0) 記憶體臨時表的建立代價。
  • memory_temptable_row_cost (default 0.1) 記憶體臨時表的行代價。
  • key_compare_cost (default 0.1) 鍵比較的代價,例如排序。
  • disk_temptable_create_cost (default 20.0) 內部myisam或innodb臨時表的建立代價。
  • disk_temptable_row_cost (default 0.5) 內部myisam或innodb臨時表的行代價。

這些都可以透過mysql.server_cost、mysql.engine_cost檢視defalt值和設定值

mysql> select * from mysql.server_cost;
+------------------------------+------------+---------------------+---------+---------------+
| cost_name                    | cost_value | last_update         | comment | default_value |
+------------------------------+------------+---------------------+---------+---------------+
| disk_temptable_create_cost   |       NULL | 2022-05-11 16:09:37 | NULL    |            20 |
| disk_temptable_row_cost      |       NULL | 2022-05-11 16:09:37 | NULL    |           0.5 |
| key_compare_cost             |       NULL | 2022-05-11 16:09:37 | NULL    |          0.05 |
| memory_temptable_create_cost |       NULL | 2022-05-11 16:09:37 | NULL    |             1 |
| memory_temptable_row_cost    |       NULL | 2022-05-11 16:09:37 | NULL    |           0.1 |
| row_evaluate_cost            |       NULL | 2022-05-11 16:09:37 | NULL    |           0.1 |
+------------------------------+------------+---------------------+---------+---------------+
mysql> select * from mysql.engine_cost;
+-------------+-------------+------------------------+------------+---------------------+---------+---------------+
| engine_name | device_type | cost_name              | cost_value | last_update         | comment | default_value |
+-------------+-------------+------------------------+------------+---------------------+---------+---------------+
| default     |           0 | io_block_read_cost     |       NULL | 2022-05-11 16:09:37 | NULL    |             1 |
| default     |           0 | memory_block_read_cost |       NULL | 2023-01-09 11:17:39 | NULL    |          0.25 |
+-------------+-------------+------------------------+------------+---------------------+---------+---------------+

計算公式:

如上面介紹的一樣,代價模型將操作分為兩類io_cost和cpu_cost,io_cost+cpu_cost就是總的cost,下面是具體的計算方法:

全表掃描:

全表掃描成本 = io_cost + 1.1 + cpu_cost + 1  (io_cost +1.1和cpu_cost +1在程式碼裡是直接硬加上的,不知道為什麼,計算的時候直接加上)

io_cost = clustered_index_size (統計資訊中的主鍵頁數) * avg_single_page_cost(讀取一個頁的平均成本)

avg_single_page_cost = pages_in_memory_percent * 0.25(memory_block_read_cost) + pages_on_disk_percent * 1.0(io_block_read_cost)

pages_in_memory_percent 表示已經載入到 Buffer Pool 中的葉結點佔所有葉結點的比例 pages_on_disk_percent 表示沒有載入到 Buffer Pool 中的葉結點佔所有葉結點的比例

所以當資料已經全部讀取到buffer pool中的時候:

io_cost=clustered_index_size * 0.25

都沒有讀取到buffer pool中的時候:

io_cost=clustered_index_size * 1.0

當部分資料在buffer pool中,部分資料需要從磁碟讀取時,這時的係數介於0.25到1之間

cpu_cost = n_rows(統計資訊中記錄數) * 0.1(row_evaluate_cost)

走索引的成本:

和全表掃描的計算方法類似,其中io_cost與搜尋的區間數有關,比如掃描三個區間where a between 1 and 10  or  a between 20 and 30 or a between 40 and 50,此時:

io_cost=3 * avg_single_page_cost

cpu_cost=記錄數 * 0.1(row_evaluate_cost)+0.01(程式碼中的微調引數)

針對二級索引還會有回表的操作:

MySQL認為每次回表都相當於是訪問一個頁面,所以每次回表都會進行一次IO,這部分成本:

io_cost=rows(記錄數)*avg_single_page_cost

對回表查詢的資料還需要進行一次計算:

cpu_cost=rows(記錄數) *  0.1(row_evaluate_cost)(需要注意的是當索引需要回表掃描時,在rows_estimation階段並不會計算這個值,在considered_execution_plans階段會重新加上這部分成本)

所以針對需要回表的查詢:

io_cost=查詢區間 * avg_single_page_cost + rows(記錄數) * avg_single_page_cost

cpu_cost=記錄數 * 0.1(row_evaluate_cost) + 0.01(程式碼中的微調引數) + rows(記錄數) * 0.1(row_evaluate_cost)

例子:

mysql> set optimizer_trace='enabled=on';
Query OK, 0 rows affected (0.00 sec)

mysql>explain select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20;
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+
| id | select_type | table | partitions | type   | possible_keys                        | key           | key_len | ref            | rows | filtered | Extra                 |
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+
|  1 | SIMPLE      | t2    | NULL       | range  | id_num_unique,idx_age,idx_age_id_num | idx_age       | 1       | NULL           | 9594 |   100.00 | Using index condition |
|  1 | SIMPLE      | t1    | NULL       | eq_ref | id_num_unique,idx_age                | id_num_unique | 60      | test.t2.id_num |    1 |    50.00 | Using where           |
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+------+----------+-----------------------+
2 rows in set, 1 warning (0.04 sec)

檢視optimizer_trace的內容

select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20 | {
  "steps": [
    {
      "join_preparation": {
        "select#": 1,
        "steps": [
          {
            "expanded_query""/* select#1 */ select `t1`.`id` AS `id`,`t1`.`id_num` AS `id_num`,`t1`.`lastname` AS `lastname`,`t1`.`firstname` AS `firstname`,`t1`.`mobile` AS `mobile`,`t1`.`sex` AS `sex`,`t1`.`birthday` AS `birthday`,`t1`.`age` AS `age`,`t1`.`top_education` AS `top_education`,`t1`.`address` AS `address`,`t1`.`income_by_year` AS `income_by_year`,`t1`.`create_time` AS `create_time`,`t1`.`update_time` AS `update_time`,`t2`.`id` AS `id`,`t2`.`id_num` AS `id_num`,`t2`.`lastname` AS `lastname`,`t2`.`firstname` AS `firstname`,`t2`.`mobile` AS `mobile`,`t2`.`sex` AS `sex`,`t2`.`birthday` AS `birthday`,`t2`.`age` AS `age`,`t2`.`top_education` AS `top_education`,`t2`.`address` AS `address`,`t2`.`income_by_year` AS `income_by_year`,`t2`.`create_time` AS `create_time`,`t2`.`update_time` AS `update_time` from (`basic_person_info` `t1` join `basic_person_info2` `t2` on((`t1`.`id_num` = `t2`.`id_num`))) where ((`t1`.`age` > 10) and (`t2`.`age` < 20))"
          },
          {
            "transformations_to_nested_joins": {
              "transformations": [
                "JOIN_condition_to_WHERE",
                "parenthesis_removal"
              ],
              "expanded_query""/* select#1 */ select `t1`.`id` AS `id`,`t1`.`id_num` AS `id_num`,`t1`.`lastname` AS `lastname`,`t1`.`firstname` AS `firstname`,`t1`.`mobile` AS `mobile`,`t1`.`sex` AS `sex`,`t1`.`birthday` AS `birthday`,`t1`.`age` AS `age`,`t1`.`top_education` AS `top_education`,`t1`.`address` AS `address`,`t1`.`income_by_year` AS `income_by_year`,`t1`.`create_time` AS `create_time`,`t1`.`update_time` AS `update_time`,`t2`.`id` AS `id`,`t2`.`id_num` AS `id_num`,`t2`.`lastname` AS `lastname`,`t2`.`firstname` AS `firstname`,`t2`.`mobile` AS `mobile`,`t2`.`sex` AS `sex`,`t2`.`birthday` AS `birthday`,`t2`.`age` AS `age`,`t2`.`top_education` AS `top_education`,`t2`.`address` AS `address`,`t2`.`income_by_year` AS `income_by_year`,`t2`.`create_time` AS `create_time`,`t2`.`update_time` AS `update_time` from `basic_person_info` `t1` join `basic_person_info2` `t2` where ((`t1`.`age` > 10) and (`t2`.`age` < 20) and (`t1`.`id_num` = `t2`.`id_num`))"
            }
          }
        ]
      }
    },
    {
      "join_optimization": {
        "select#": 1,
        "steps": [
          {
            "condition_processing": {
              "condition""WHERE",
              "original_condition""((`t1`.`age` > 10) and (`t2`.`age` < 20) and (`t1`.`id_num` = `t2`.`id_num`))",
              "steps": [
                {
                  "transformation""equality_propagation",
                  "resulting_condition""((`t1`.`age` > 10) and (`t2`.`age` < 20) and multiple equal(`t1`.`id_num`, `t2`.`id_num`))"
                },
                {
                  "transformation""constant_propagation",
                  "resulting_condition""((`t1`.`age` > 10) and (`t2`.`age` < 20) and multiple equal(`t1`.`id_num`, `t2`.`id_num`))"
                },
                {
                  "transformation""trivial_condition_removal",
                  "resulting_condition""((`t1`.`age` > 10) and (`t2`.`age` < 20) and multiple equal(`t1`.`id_num`, `t2`.`id_num`))"
                }
              ]
            }
          },
          {
            "substitute_generated_columns": {
            }
          },
          {
            "table_dependencies": [
              {
                "table""`basic_person_info` `t1`",
                "row_may_be_null"false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ]
              },
              {
                "table""`basic_person_info2` `t2`",
                "row_may_be_null"false,
                "map_bit": 1,
                "depends_on_map_bits": [
                ]
              }
            ]
          },
          {
            "ref_optimizer_key_uses": [
              {
                "table""`basic_person_info` `t1`",
                "field""id_num",
                "equals""`t2`.`id_num`",
                "null_rejecting"true
              },
              {
                "table""`basic_person_info2` `t2`",
                "field""id_num",
                "equals""`t1`.`id_num`",
                "null_rejecting"true
              }
            ]
          },
          {
            "rows_estimation": [
              {
                "table""`basic_person_info` `t1`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 86734,
                    "cost": 8859.75
                    
                    t1表的scan成本=聚簇索引頁數*0.25 + 行數 * 0.1 +1.1+1
                    737*0.25+1.1+86734*0.1+1=8859.75
                    
                  },
                  "potential_range_indexes": [
                    {
                      "index""PRIMARY",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""id_num_unique",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""mobile_unique",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""idx_basic_person_info_name",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""idx_basic_person_info_top_education",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""idx_basic_person_info_create_time",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""idx_basic_person_info_mobile",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""idx_age",
                      "usable"true,
                      "key_parts": [
                        "age",
                        "id"
                      ]
                    }
                  ],
                  "setup_range_conditions": [
                  ],
                  "group_index_range": {
                    "chosen"false,
                    "cause""not_single_table"
                  },
                  "skip_scan_range": {
                    "chosen"false,
                    "cause""not_single_table"
                  },
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        "index""idx_age",
                        "ranges": [
                          "10 < age"
                        ],
                        "index_dives_for_eq_ranges"true,
                        "rowid_ordered"false,
                        "using_mrr"false,
                        "index_only"false,
                        "rows": 43367,
                        "cost": 15178.7,
                        
                        透過索引idx_age讀取資料:
                        io_cost=區間數* 0.25 +記錄數* 0.25
                        io_cost=1*0.25+43367*0.25=10,842  
                        cpu_cost=記錄數* 0.1 (沒有回表的cost)
                        cpu_cost=43367*0.1=4,336.7 
                        cost=10842+4,336.7=15178.7
                        
                        "chosen"false,
                        "cause""cost"
                      }
                    ],
                    "analyzing_roworder_intersect": {
                      "usable"false,
                      "cause""too_few_roworder_scans"
                    }
                  }
                }
              },
              {
                "table""`basic_person_info2` `t2`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 73845,
                    "cost": 7538.85
                    
                    t2表的scan成本=聚簇索引頁數*0.25 + 行數 * 0.1 +1.1+1
                    609*0.25+1+73845*0.1+1.1=7538.85
                    
                  },
                  "potential_range_indexes": [
                    {
                      "index""PRIMARY",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""id_num_unique",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""mobile_unique",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""idx_basic_person_info_name",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""idx_basic_person_info_top_education",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""idx_basic_person_info_create_time",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""idx_basic_person_info_mobile",
                      "usable"false,
                      "cause""not_applicable"
                    },
                    {
                      "index""idx_age",
                      "usable"true,
                      "key_parts": [
                        "age",
                        "id"
                      ]
                    },
                    {
                      "index""idx_age_id_num",
                      "usable"true,
                      "key_parts": [
                        "age",
                        "id_num",
                        "id"
                      ]
                    }
                  ],
                  "setup_range_conditions": [
                  ],
                  "group_index_range": {
                    "chosen"false,
                    "cause""not_single_table"
                  },
                  "skip_scan_range": {
                    "chosen"false,
                    "cause""not_single_table"
                  },
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        "index""idx_age",
                        "ranges": [
                          "age < 20"
                        ],
                        "index_dives_for_eq_ranges"true,
                        "rowid_ordered"false,
                        "using_mrr"false,
                        "index_only"false,
                        "rows": 9594,
                        "cost": 3358.16,
                        
                        透過索引idx_age讀取資料:
                        io_cost=區間數* 0.25 +記錄數* 0.25
                        io_cost=1*0.25+9594*0.25=2,398.75        
                        cpu_cost=記錄數* 0.1   (沒有回表的cost) 
                        cpu_cost=9594*0.1959.4  
                        cost=2,398.75+959.4=3,358.15
                        
                        "chosen"true
                      },
                      {
                        "index""idx_age_id_num",
                        "ranges": [
                          "age < 20"
                        ],
                        "index_dives_for_eq_ranges"true,
                        "rowid_ordered"false,
                        "using_mrr"false,
                        "index_only"false,
                        "rows": 19086,
                        "cost": 6680.36,
                        
                        透過索引idx_age_id_num讀取資料:
                        io_cost=區間數* 0.25 +記錄數* 0.25
                        io_cost=1*0.25+19086*0.25=4,771.75           
                        cpu_cost=記錄數* 0.1  (沒有回表的cost)  
                        cpu_cost=19086*0.1=1908.6
                        cost=4,771.75+1908.6=6,680.35
                        
                        "chosen"false,
                        "cause""cost"
                      }
                    ],
                    "analyzing_roworder_intersect": {
                      "usable"false,
                      "cause""too_few_roworder_scans"
                    }
                  },
                  "chosen_range_access_summary": {
                    "range_access_plan": {
                      "type""range_scan",
                      "index""idx_age",
                      "rows": 9594,
                      "ranges": [
                        "age < 20"
                      ]
                    },
                    "rows_for_plan": 9594,
                    "cost_for_plan": 3358.16,
                    "chosen"true
                  }
                }
              }
            ]
          },
          {
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ],
                "table""`basic_person_info2` `t2`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "access_type""ref",
                      "index""id_num_unique",
                      "usable"false,
                      "chosen"false
                    },
                    {
                      "rows_to_scan": 9594,
                      "filtering_effect": [
                      ],
                      "final_filtering_effect": 1,
                      "access_type""range",
                      "range_details": {
                        "used_index""idx_age"
                      },
                      "resulting_rows": 9594,
                      "cost": 4317.56,
                      
                        透過索引idx_age讀取資料:
                        io_cost=區間數* 0.25 +記錄數* 0.25
                        io_cost=1*0.25+9594*0.25=2,398.75        
                        cpu_cost=記錄數* 0.1 + 記錄數* 0.1   
                        cpu_cost=9594*0.1*2=1,918.8  
                        cost=2,398.75+1,918.8=4317.56
                      
                      "chosen"true
                    }
                  ]
                },
                "condition_filtering_pct": 100,
                "rows_for_plan": 9594,
                "cost_for_plan": 4317.56,
                "rest_of_plan": [
                  {
                    "plan_prefix": [
                      "`basic_person_info2` `t2`"
                    ],
                    "table""`basic_person_info` `t1`",
                    "best_access_path": {
                      "considered_access_paths": [
                        {
                          "access_type""eq_ref",
                          "index""id_num_unique",
                          "rows": 1,
                          "cost": 3357.9,
                          
                          io_cost=t2表記錄數*0.25=9594*0.25=2398.5
                          cpu_cost=記錄數*0.1=9594*0.1=959.4
                          cost=2398.5+959.4=3357.9
                          
                          "chosen"true
                        },
                        {
                          "rows_to_scan": 86734,
                          "filtering_effect": [
                          ],
                          "final_filtering_effect": 0.5,
                          "access_type""scan",
                          "using_join_cache"true,
                          "buffers_needed": 14,
                          "resulting_rows": 43367,
                          "cost": 4.16701e+07,
                          "chosen"false
                        }
                      ]
                    },
                    "condition_filtering_pct": 100,
                    "rows_for_plan": 9594,
                    "cost_for_plan": 7675.46,
                    
                   總cost=4,317.56+3,357.9=7,675.46
                   
                    "chosen"true
                  }
                ]
              },
              {
                "plan_prefix": [
                ],
                "table""`basic_person_info` `t1`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                      "access_type""ref",
                      "index""id_num_unique",
                      "usable"false,
                      "chosen"false
                    },
                    {
                      "rows_to_scan": 86734,
                      "filtering_effect": [
                      ],
                      "final_filtering_effect": 0.5,
                      "access_type""scan",
                      "resulting_rows": 43367,
                      "cost": 8857.65,
                      
                      t1的scan成本
                      
                      "chosen"true
                    }
                  ]
                },
                "condition_filtering_pct": 100,
                "rows_for_plan": 43367,
                "cost_for_plan": 8857.65,
                "pruned_by_cost"true
                
                放棄後續的計算
                
              }
            ]
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition""((`t1`.`id_num` = `t2`.`id_num`) and (`t1`.`age` > 10) and (`t2`.`age` < 20))",
              "attached_conditions_computation": [
              ],
              "attached_conditions_summary": [
                {
                  "table""`basic_person_info2` `t2`",
                  "attached""(`t2`.`age` < 20)"
                },
                {
                  "table""`basic_person_info` `t1`",
                  "attached""((`t1`.`id_num` = `t2`.`id_num`) and (`t1`.`age` > 10))"
                }
              ]
            }
          },
          {
            "finalizing_table_conditions": [
              {
                "table""`basic_person_info2` `t2`",
                "original_table_condition""(`t2`.`age` < 20)",
                "final_table_condition   ""(`t2`.`age` < 20)"
              },
              {
                "table""`basic_person_info` `t1`",
                "original_table_condition""((`t1`.`id_num` = `t2`.`id_num`) and (`t1`.`age` > 10))",
                "final_table_condition   ""(`t1`.`age` > 10)"
              }
            ]
          },
          {
            "refine_plan": [
              {
                "table""`basic_person_info2` `t2`",
                "pushed_index_condition""(`t2`.`age` < 20)",
                "table_condition_attached": null
              },
              {
                "table""`basic_person_info` `t1`"
              }
            ]
          }
        ]
      }
    },
    {
      "join_execution": {
        "select#": 1,
        "steps": [
        ]
      }
    }
  ]
}

成本常數修改:

前面已經介紹了成本常量值實際上存放在MySQL自帶的系統庫MySQL中的server_cost和engine_cost表中,其中server_cost表存放server層的成本常量,engine_cost表存放engine層成本常量

mysql> select * from mysql.server_cost;
+------------------------------+------------+---------------------+---------+---------------+
| cost_name                    | cost_value | last_update         | comment | default_value |
+------------------------------+------------+---------------------+---------+---------------+
| disk_temptable_create_cost   |       NULL | 2022-05-11 16:09:37 | NULL    |            20 |
| disk_temptable_row_cost      |       NULL | 2022-05-11 16:09:37 | NULL    |           0.5 |
| key_compare_cost             |       NULL | 2022-05-11 16:09:37 | NULL    |          0.05 |
| memory_temptable_create_cost |       NULL | 2022-05-11 16:09:37 | NULL    |             1 |
| memory_temptable_row_cost    |       NULL | 2022-05-11 16:09:37 | NULL    |           0.1 |
| row_evaluate_cost            |       NULL | 2022-05-11 16:09:37 | NULL    |           0.1 |
+------------------------------+------------+---------------------+---------+---------------+

mysql> select * from mysql.engine_cost;
+-------------+-------------+------------------------+------------+---------------------+---------+---------------+
| engine_name | device_type | cost_name              | cost_value | last_update         | comment | default_value |
+-------------+-------------+------------------------+------------+---------------------+---------+---------------+
| default     |           0 | io_block_read_cost     |       NULL | 2022-05-11 16:09:37 | NULL    |             1 |
| default     |           0 | memory_block_read_cost |       NULL | 2023-01-09 11:17:39 | NULL    |          0.25 |
+-------------+-------------+------------------------+------------+---------------------+---------+---------------+

其中 default_value的值是系統預設的,不能修改,cost_value列的值我們可以修改,如果cost_value列的值不為空系統將用該值覆蓋預設值,我們可以透過update語句來修改

mysql> update mysql.engine_cost set cost_value=10 where cost_name='memory_block_read_cost';
Query OK, 0 rows affected (0.00 sec)
mysql> update mysql.engine_cost set cost_value=10 where cost_name='io_block_read_cost';
Query OK, 0 rows affected (0.00 sec)

很多資料都說執行flush optimizer_costs就可以生效,不過我在修改完後並執行flush optimizer_costs並不能馬上生效,最後是透過重啟資料庫例項才生效,這個可能是資料庫版本的差異,大家可以自行驗證。

mysql> explain select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20;
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+-------+----------+-------------+
| id | select_type | table | partitions | type   | possible_keys                        | key           | key_len | ref            | rows  | filtered | Extra       |
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+-------+----------+-------------+
|  1 | SIMPLE      | t2    | NULL       | ALL    | id_num_unique,idx_age,idx_age_id_num | NULL          | NULL    | NULL           | 73990 |    12.97 | Using where |
|  1 | SIMPLE      | t1    | NULL       | eq_ref | id_num_unique,idx_age                | id_num_unique | 60      | test.t2.id_num |     1 |    50.00 | Using where |
+----+-------------+-------+------------+--------+--------------------------------------+---------------+---------+----------------+-------+----------+-------------+

"table""`basic_person_info2` `t2`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 73990,
                    "cost": 13491.1
                   
                   全表掃描cost=609*10+73990*0.1+1.1+1= 13491.1
                   
                  },
"index""idx_age",
                        "ranges": [
                          "age < 20"
                        ],
                        "index_dives_for_eq_ranges"true,
                        "rowid_ordered"false,
                        "using_mrr"false,
                        "index_only"false,
                        "rows": 9594,
                        "cost": 96909.4,
                        
                        idx_age索引掃描cost=1*10+9594*10+9594*0.1=96,909.4
                        
                        "chosen"false,
                        "cause""cost"
                      },

修改後的執行計劃,發現t2表走了全表掃描了而沒有走idx_age索引,分別檢視一下t2表走全表掃描和idx_age索引的cost發現全表掃描的cost為13491.1,而走索引的cost為96,909.4,因為全表掃描的cost比走索引低,所以最佳化器沒有選擇idx_age索引。

從這個例子可以看出,更改成本常量值會直接影響最佳化器的方案選擇,所以一定要慎重,沒有特殊原因建議不要修改。

explain format=json

雖然透過optimizer_trace可以看到很多詳細的最佳化器選擇過程,但是使用起來起來還是比較麻煩,需要過濾的資訊很多,這時explain format=json輸出json格式的分析資料也是一個不錯的選擇,它也包含語句將要執行的成本資訊,如下:

query_cost  總查詢成本
read_cost   IO成本+除 eval_cost以外cpu成本
eval_cost   檢測rows * filter條記錄的成本
prefix_cost 單次查詢的成本,等於read_cost+eval_cost
mysql> explain format=json select * from basic_person_info t1 join basic_person_info2 t2 on t1.id_num=t2.id_num where t1.age >10 and t2.age<20;
{
  "query_block": {
    "select_id": 1,
    "cost_info": {
      "query_cost""7675.46"
    },
    "nested_loop": [
      {
        "table": {
          "table_name""t2",
          "access_type""range",
          "possible_keys": [
            "id_num_unique",
            "idx_age",
            "idx_age_id_num"
          ],
          "key""idx_age",
          "used_key_parts": [
            "age"
          ],
          "key_length""1",
          "rows_examined_per_scan": 9594,
          "rows_produced_per_join": 9594,
          "filtered""100.00",
          "index_condition""(`test`.`t2`.`age` < 20)",
          "cost_info": {
            "read_cost""3358.16",
            包含所有io成本+(cpu成本-eval_cost)
            "eval_cost""959.40",
            計算扇出的cpu成本,最佳化器利用啟發式規則估算出滿足所有條件的的比例(filtered)
            =rows_examined_per_scan*filtered*0.1
            "prefix_cost""4317.56",
            單表查詢的總成本
            
            "data_read_per_join""3M"
          },
          "used_columns": [
            "id",
            "id_num",
            "lastname",
            "firstname",
            "mobile",
            "sex",
            "birthday",
            "age",
            "top_education",
            "address",
            "income_by_year",
            "create_time",
            "update_time"
          ]
        }
      },
      {
        "table": {
          "table_name""t1",
          "access_type""eq_ref",
          "possible_keys": [
            "id_num_unique",
            "idx_age"
          ],
          "key""id_num_unique",
          "used_key_parts": [
            "id_num"
          ],
          "key_length""60",
          "ref": [
            "test.t2.id_num"
          ],
          "rows_examined_per_scan": 1,
          "rows_produced_per_join": 4797,
          "filtered""50.00",
          "cost_info": {
            "read_cost""2398.50",
            包含所有io成本+(cpu成本-eval_cost)
            "eval_cost""479.70",
            計算扇出的cpu成本,最佳化器利用啟發式規則估算出滿足所有條件的的比例(filtered)
            =rows_examined_per_scan*filtered*0.1
            "prefix_cost""7675.46",
            兩表查詢的總cost
            "data_read_per_join""1M"
          },
          "used_columns": [
            "id",
            "id_num",
            "lastname",
            "firstname",
            "mobile",
            "sex",
            "birthday",
            "age",
            "top_education",
            "address",
            "income_by_year",
            "create_time",
            "update_time"
          ],
          "attached_condition""(`test`.`t1`.`age` > 10)"
        }
      }
    ]
  }
}

另外,explain結合show warnings語句一起使用還可以得知最佳化器改寫後的語句

mysql> show warnings;
+-------+------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Level | Code | Message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
+-------+------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Note  | 1003 | /* select#1 */ select `test`.`t1`.`id` AS `id`,`test`.`t1`.`id_num` AS `id_num`,`test`.`t1`.`lastname` AS `lastname`,`test`.`t1`.`firstname` AS `firstname`,`test`.`t1`.`mobile` AS `mobile`,`test`.`t1`.`sex` AS `sex`,`test`.`t1`.`birthday` AS `birthday`,`test`.`t1`.`age` AS `age`,`test`.`t1`.`top_education` AS `top_education`,`test`.`t1`.`address` AS `address`,`test`.`t1`.`income_by_year` AS `income_by_year`,`test`.`t1`.`create_time` AS `create_time`,`test`.`t1`.`update_time` AS `update_time`,`test`.`t2`.`id` AS `id`,`test`.`t2`.`id_num` AS `id_num`,`test`.`t2`.`lastname` AS `lastname`,`test`.`t2`.`firstname` AS `firstname`,`test`.`t2`.`mobile` AS `mobile`,`test`.`t2`.`sex` AS `sex`,`test`.`t2`.`birthday` AS `birthday`,`test`.`t2`.`age` AS `age`,`test`.`t2`.`top_education` AS `top_education`,`test`.`t2`.`address` AS `address`,`test`.`t2`.`income_by_year` AS `income_by_year`,`test`.`t2`.`create_time` AS `create_time`,`test`.`t2`.`update_time` AS `update_time` from `test`.`basic_person_info` `t1` join `test`.`basic_person_info2` `t2` where ((`test`.`t1`.`id_num` = `test`.`t2`.`id_num`) and (`test`.`t1`.`age` > 10) and (`test`.`t2`.`age` < 20)) |
+-------+------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1 row in set (0.00 sec)

總結:

  • MySQL的最佳化器是基於成本來選擇最優執行方案的,哪個成本最少就選哪個,所以重點在於計算出各個執行計劃的cost
  • 成本由CPU成本和IO成本組成,每個成本常數值可以自己調整,非必要的情況下不要調整,以免影響整個資料庫的執行計劃選擇
  • 透過開啟optimizer_trace可以跟蹤最佳化器的各個環節的分析步驟,可以判斷有時候為什麼沒有走索引而走了全表掃描
  • explain加上format=json選項後可以檢視成本資訊分為read_cost和eval_cost,但只能看到當前已經選擇的執行計劃,另外透過show warnings可以看到最佳化器改寫後的語句
Enjoy GreatSQL :)

來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/70024922/viewspace-2938596/,如需轉載,請註明出處,否則將追究法律責任。

相關文章