就像黑火藥時代裡突然誕生的核彈一樣,OpenAI的ChatGPT語言模型的橫空出世,是人工智慧技術發展史上的一個重要里程碑。這是一款無與倫比、超凡絕倫的模型,能夠進行自然語言推理和對話,並且具有出色的語言生成能力。
好吧,本篇的開頭其實是由ChatGPT生成的:
沒辦法,面對這個遠超時代的AI產品,我們能說什麼呢?頂禮膜拜?驚為天人?任何言語對於描述ChatGPT來說已經是蒼白無力的,而辭海中的形容詞在面對ChatGPT時也已經鞭長莫及。
一句話:言語不能贊其偉大。
本次我們利用ChatGPT的開放API接入釘釘群聊/單聊機器人,讓釘釘機器人具備進行自然語言推理和對話的能力,所謂化腐朽為神奇,不過如此。
註冊和使用OpenAi的ChatGPT
首先註冊OpenAi平臺:https://beta.openai.com/ ,由於ChatGPT過於火爆,導致很多地區無法正常註冊,這裡推薦使用北美地區的代理IP,與此同時,一定要注意,如果之後希望使用後端的API介面方式呼叫ChatGPT,就不要使用谷歌或者微軟的三方賬號進行登入,否則無法透過郵箱和秘鑰交換OpenAi平臺的access_token,切記。
同時,接受驗證碼手機號也必須是北美地區的手機號,這裡推薦一個北美地區的接碼平臺:https://sms.qisms.com/index 非常好用。
註冊成功之後,這裡推薦github上開源大神rawandahmad698已經封裝好的開源SDK,避免重複造輪子:https://github.com/rawandahmad698/PyChatGPT
安裝SDK:
pip3 install chatgptpy --upgrade
安裝好之後,編寫測試指令碼:
chat = Chat(email="OpenAi郵箱", password="OpenAi密碼",proxies="代理地址")
answer = chat.ask("你好")
print(answer)
注意,執行程式碼之前,一定要使用代理proxies,並且確保是北美地區的IP地址。
程式返回:
[OpenAI] Email address: ********
[OpenAI] Password: *********
[OpenAI] Using proxy: {'http': 'http://localhost:4780', 'https': 'http://localhost:4780'}
[OpenAI] Beginning auth process
[OpenAI][1] Making request to https://chat.openai.com/auth/login
[OpenAI][1] Request was successful
[OpenAI][2] Beginning part two
[OpenAI][2] Grabbing CSRF token from https://chat.openai.com/api/auth/csrf
[OpenAI][2] Request was successful
[OpenAI][2] CSRF Token: 1b1357a34e4b0b9a74e999372fe0413ab981c9a72e030a54b3bf172bd6176c5e
[OpenAI][3] Beginning part three
[OpenAI][3] Making request to https://chat.openai.com/api/auth/signin/auth0?prompt=login
[OpenAI][3] Request was successful
[OpenAI][3] Callback URL: https://auth0.openai.com/authorize?client_id=TdJIcbe16WoTHtN95nyywh5E4yOo6ItG&scope=openid%20email%20profile%20offline_access%20model.request%20model.read%20organization.read&response_type=code&redirect_uri=https%3A%2F%2Fchat.openai.com%2Fapi%2Fauth%2Fcallback%2Fauth0&audience=https%3A%2F%2Fapi.openai.com%2Fv1&prompt=login&state=RJt9U13ATPmlt795xMNohQZcUNOytZNvHoq3JI8HGZ4&code_challenge=Pq97ptna00Ybak2dUmIMhR3eqmXZnZz-Fij7otMMw7U&code_challenge_method=S256
[OpenAI][4] Making request to https://auth0.openai.com/authorize?client_id=TdJIcbe16WoTHtN95nyywh5E4yOo6ItG&scope=openid%20email%20profile%20offline_access%20model.request%20model.read%20organization.read&response_type=code&redirect_uri=https%3A%2F%2Fchat.openai.com%2Fapi%2Fauth%2Fcallback%2Fauth0&audience=https%3A%2F%2Fapi.openai.com%2Fv1&prompt=login&state=RJt9U13ATPmlt795xMNohQZcUNOytZNvHoq3JI8HGZ4&code_challenge=Pq97ptna00Ybak2dUmIMhR3eqmXZnZz-Fij7otMMw7U&code_challenge_method=S256
[OpenAI][4] Request was successful
[OpenAI][4] Current State: hKFo2SA5VzlqUDA0Mkl5TnQtNUpYcGRBU0ZfRkhQVUY1eVpWV6Fur3VuaXZlcnNhbC1sb2dpbqN0aWTZIGMzU0xvbThRUXFxMTczeVg4bF8zRFZnYVNOM2M3Q0RFo2NpZNkgVGRKSWNiZTE2V29USHROOTVueXl3aDVFNHlPbzZJdEc
[OpenAI][5] Making request to https://auth0.openai.com/u/login/identifier?state=hKFo2SA5VzlqUDA0Mkl5TnQtNUpYcGRBU0ZfRkhQVUY1eVpWV6Fur3VuaXZlcnNhbC1sb2dpbqN0aWTZIGMzU0xvbThRUXFxMTczeVg4bF8zRFZnYVNOM2M3Q0RFo2NpZNkgVGRKSWNiZTE2V29USHROOTVueXl3aDVFNHlPbzZJdEc
[OpenAI][5] Request was successful
[OpenAI][5] No captcha detected
[OpenAI][6] Making request to https://auth0.openai.com/u/login/identifier
[OpenAI][6] Email found
[OpenAI][7] Entering password...
[OpenAI][7] Password was correct
[OpenAI][7] Old state: hKFo2SA5VzlqUDA0Mkl5TnQtNUpYcGRBU0ZfRkhQVUY1eVpWV6Fur3VuaXZlcnNhbC1sb2dpbqN0aWTZIGMzU0xvbThRUXFxMTczeVg4bF8zRFZnYVNOM2M3Q0RFo2NpZNkgVGRKSWNiZTE2V29USHROOTVueXl3aDVFNHlPbzZJdEc
[OpenAI][7] New State: c3SLom8QQqq173yX8l_3DVgaSN3c7CDE
[OpenAI][8] Making request to https://auth0.openai.com/authorize/resume?state=c3SLom8QQqq173yX8l_3DVgaSN3c7CDE
[OpenAI][8] All good
[OpenAI][8] Access Token: eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCIsImtpZCI6Ik1UaEVOVUpHTkVNMVFURTRNMEZCTWpkQ05UZzVNRFUxUlRVd1FVSkRNRU13UmtGRVFrRXpSZyJ9.eyJodHRwczovL2FwaS5vcGVuYWkuY29tL3Byb2ZpbGUiOnsiZW1haWwiOiJ6Y3hleTI5MTFAb3V0bG9vay5jb20iLCJlbWFpbF92ZXJpZmllZCI6dHJ1ZSwiZ2VvaXBfY291bnRyeSI6IlVTIn0sImh0dHBzOi8vYXBpLm9wZW5haS5jb20vYXV0aCI6eyJ1c2VyX2lkIjoidXNlci1IcHQ2SXF6R0k0RW43V213dGdzaUVOUjUifSwiaXNzIjoiaHR0cHM6Ly9hdXRoMC5vcGVuYWkuY29tLyIsInN1YiI6ImF1dGgwfDYzOTA3ZWRiMTQzYTFkZjQxMzk5Yzc0YyIsImF1ZCI6WyJodHRwczovL2FwaS5vcGVuYWkuY29tL3YxIiwiaHR0cHM6Ly9vcGVuYWkuYXV0aDAuY29tL3VzZXJpbmZvIl0sImlhdCI6MTY3MDQ1OTkzNywiZXhwIjoxNjcwNTQ2MzM3LCJhenAiOiJUZEpJY2JlMTZXb1RIdE45NW55eXdoNUU0eU9vNkl0RyIsInNjb3BlIjoib3BlbmlkIGVtYWlsIHByb2ZpbGUgbW9kZWwucmVhZCBtb2RlbC5yZXF1ZXN0IG9yZ2FuaXphdGlvbi5yZWFkIG9mZmxpbmVfYWNjZXNzIn0.PtXKhJqwudNKLIkNRc5OO6T7Tsl8ydZ8WWnCJ3Ax2c40CQibRTiGLDmfvk2gW5pVIkOpKldWYs6Jrd8UVi0Ih9VMDwS9JL6HpZKsoRaIhy6r6l7AW5vMMQN-l0ntCsgefQeGIrwtCTUsIklN8dyZDkRkympC2AzRkayAcFvFckXTHi_J5Fivr5J7We_OM4cGFJEKTLkaSw6MnYku-uYwAKPVEpFsF7fLnUBRQxn5Zz90FhdeLYEg4IUjPWKPp1iMbp_fa9qhwwtKBwogtrIVzq2t8NdUotoNYgoo2uV2xjQWC2m4V4C_xgkSzLj2TTtRJMOYKGH-lHWs2_yRQF0wOg
[OpenAI][9] Saving access token...
[OpenAI][8] Saved access token
首次執行程式會透過代理自動登入OpenAi平臺,並且換取token,最後將token儲存在本地。
隨後返回ChatGPT的資訊:
➜ mydemo git:(master) ✗ /opt/homebrew/bin/python3.10 "/Users/liuyue/wodfan/work/mydemo/test_chatgpt.py"
Using proxies: http://localhost:4780
你好,很高興為你提供幫助。有什麼需要我幫忙的嗎?
至此,ChatGPT介面就除錯好了。
配置釘釘Dingding機器人
隨後,我們來配置C端的機器人,注意這裡一定要使用支援outgoing回撥的企業機器人,而不是普通的機器人,參考文件:https://open.dingtalk.com/document/group/enterprise-created-chatbot
建立好企業機器人之後,獲取機器人應用的Key和秘鑰,同時配置好出口IP和介面地址:
所謂出口IP即呼叫釘釘服務合法的ip,訊息接受地址是接受C端資訊的地址,這裡我們使用非同步非阻塞的Tornado框架來構建接受資訊服務:
import hmac
import hashlib
import base64
import json
import tornado
from tornado.options import define, options
define('port', default=8000, help='default port',type=int)
class Robot(tornado.web.RequestHandler):
async def post(self):
timestamp = self.request.headers.get('timestamp', None)
sign = self.request.headers.get('sign', None)
app_secret = '釘釘機器人秘鑰'
app_secret_enc = app_secret.encode('utf-8')
string_to_sign = '{}\n{}'.format(timestamp, app_secret)
string_to_sign_enc = string_to_sign.encode('utf-8')
hmac_code = hmac.new(app_secret_enc, string_to_sign_enc, digestmod=hashlib.sha256).digest()
my_sign = base64.b64encode(hmac_code).decode('utf-8')
if sign != my_sign:
return self.finish({"errcode":1,"msg":"簽名有誤"})
data = json.loads(self.request.body)
text = data['text']["content"]
atUsers = data.get("atUsers",None)
uid = data.get("senderStaffId",None)
return self.finish({"errcode":0,"msg":text})
urlpatterns = [
(r"/robot_chat/",Robot),
]
# 建立Tornado例項
application = tornado.web.Application(urlpatterns,debug=True)
if __name__ == "__main__":
tornado.options.parse_command_line()
application.listen(options.port)
tornado.ioloop.IOLoop.instance().start()
這裡我們透過Robot非同步控制器來接受所有來自釘釘客戶端的資訊,即人類對機器人說的話,需要注意的是,後端服務需要對請求頭中的timestamp和sign進行驗證,以判斷是否是來自釘釘的合法請求,避免其他仿冒釘釘呼叫開發者的HTTPS服務傳送資料。
所以這裡一旦簽名有問題,就結束邏輯:
timestamp = self.request.headers.get('timestamp', None)
sign = self.request.headers.get('sign', None)
app_secret = '釘釘機器人秘鑰'
app_secret_enc = app_secret.encode('utf-8')
string_to_sign = '{}\n{}'.format(timestamp, app_secret)
string_to_sign_enc = string_to_sign.encode('utf-8')
hmac_code = hmac.new(app_secret_enc, string_to_sign_enc, digestmod=hashlib.sha256).digest()
my_sign = base64.b64encode(hmac_code).decode('utf-8')
if sign != my_sign:
return self.finish({"errcode":1,"msg":"簽名有誤"})
最後該介面會返回發信人id(uid)以及具體資訊內容(text)。
至此,後端接受服務就配置好了。
下面就是後端推送服務,首先,根據官方文件:https://open.dingtalk.com/document/orgapp-server/obtain-the-access_token-of-an-internal-app?spm=ding_open_doc.document.0.0.5f255239xgW3zE#topic-2056397
需要獲取釘釘介面的token:
def get_token(self):
res = requests.post("https://api.dingtalk.com/v1.0/oauth2/accessToken",data=json.dumps({"appKey":self._appKey,"appSecret":self._appSecret}),headers={"Content-Type":"application/json"})
token = res.json()["accessToken"]
return token
我們來配置單聊推送:
# 單聊
def send_message(self,uid,message):
res = requests.post("https://api.dingtalk.com/v1.0/robot/oToMessages/batchSend",data=json.dumps({"robotCode":self._appKey,"userIds":[uid],"msgKey":"sampleText","msgParam":'{"content":"'+message+'"}'}),headers={"Content-Type":"application/json","x-acs-dingtalk-access-token":self._token})
print(res.text)
具體效果:
接著,繼續根據官方文件:https://open.dingtalk.com/document/robots/guide-to-user-access-for-intra-enterprise-robot-group-chat
配置群聊推送方法:
# 群聊
def send_user(self,uid,message):
data = {
"at": {
"atUserIds": [
uid
]
},
"text": {
"content": message
},
"msgtype": "text"
}
res = requests.post(self._webhook,data=json.dumps(data),headers={"Content-Type":"application/json"})
print(res.text)
群聊效果:
這裡需要注意的是,單聊是透過介面的方式進行推送,而群內聊天是透過webhook方式進行推送,關於webhook,請移玉步至:使用python3.7配置開發釘釘群自定義機器人(2020年新版攻略)
完整程式碼:
import requests
import json
from pychatgpt import Chat
class DingDing:
def __init__(self,appKey=None,appSecret=None) -> None:
self._appKey = appKey
self._appSecret = appSecret
self._token = self.get_token()
# 機器人webhook地址
self._webhook = ""
def get_token(self):
res = requests.post("https://api.dingtalk.com/v1.0/oauth2/accessToken",data=json.dumps({"appKey":self._appKey,"appSecret":self._appSecret}),headers={"Content-Type":"application/json"})
token = res.json()["accessToken"]
return token
# 單聊
def send_message(self,uid,message):
res = requests.post("https://api.dingtalk.com/v1.0/robot/oToMessages/batchSend",data=json.dumps({"robotCode":self._appKey,"userIds":[uid],"msgKey":"sampleText","msgParam":'{"content":"'+message+'"}'}),headers={"Content-Type":"application/json","x-acs-dingtalk-access-token":self._token})
print(res.text)
# 群聊
def send_user(self,uid,message):
data = {
"at": {
"atUserIds": [
uid
]
},
"text": {
"content": message
},
"msgtype": "text"
}
res = requests.post(self._webhook,data=json.dumps(data),headers={"Content-Type":"application/json"})
print(res.text)
if __name__ == '__main__':
dingding = DingDing("appkey","appSecret")
#chat = Chat(email="OpenAi郵箱", password="OpenAi密碼",proxies="代理地址")
#answer = chat.ask("你好")
# 單聊
#dingding.send_message('uid',answer)
# 群聊
#dingding.send_user('uid',answer)
#print(answer)
至此,後端推送服務就配置好了。
結語
最後,奉上Github專案地址,與眾親同饗:https://github.com/zcxey2911/Python_ChatGPT_ForDingding_OpenAi ,毫無疑問,ChatGPT是NLP領域歷史上最偉大的專案,沒有之一,偉大,就是技術層面的極致,你同意嗎?