雲原生架構的七個原則
導讀 | 作為一種架構模式,雲原生架構透過若干原則來對應用架構進行核心控制。這些原則可以幫助技術主管和架構師在進行技術選型時更加高效、準確,下面將展開具體介紹。 |
在軟體開發過程中,當程式碼數量與開發團隊規模都擴張到一定程度後,就需要重構應用,透過模組化與元件化的手段分離關注點,降低應用的複雜度,提升軟體的開發效率,降低維護成本。
如圖 1,隨著業務的不斷髮展,單體應用能夠承載的容量將逐漸到達上限,即使透過應用改造來突破垂直擴充套件(Scale Up)的瓶頸,並將其轉化為支撐水平擴充套件(Scale Out)的能力,在全域性併發訪問的情況下,也依然會面臨資料計算複雜度和儲存容量的問題。因此,需要將單體應用進一步拆分,按業務邊界重新劃分成分散式應用,使應用與應用之間不再直接共享資料,而是透過約定好的契約進行通訊,以提高擴充套件性。
服務化設計原則是指透過服務化架構拆分不同生命週期的業務單元,實現業務單元的獨立迭代,從而加快整體的迭代速度,保證迭代的穩定性。同時,服務化架構採用的是面向介面程式設計方式,增加了軟體的複用程度,增強了水平擴充套件的能力。服務化設計原則還強調在架構層面抽象化業務模組之間的關係,從而幫助業務模組實現基於服務流量(而非網路流量)的策略控制和治理,而無須關注這些服務是基於何種程式語言開發的。
有關服務化設計原則的實踐在業界已有很多成功案例。其中影響最廣、最為業界稱道的是 Netflix 在生產系統上所進行的大規模微服務化實踐。透過這次實踐,Netflix 在全球不僅承接了多達 1.67 億訂閱使用者以及全球網際網路頻寬容量 15% 以上的流量,而且在開源領域貢獻了 Eureka、Zuul、Hystrix 等出色的微服務元件。
不僅海外公司正在不斷進行服務化實踐,國內公司對服務化也有很高的認知。隨著近幾年網際網路化的發展,無論是新銳網際網路公司,還是傳統大型企業,在服務化實踐上都有很好的實踐和成功案例。阿里巴巴的服務化實踐發端於 2008 年的五彩石專案,歷經 10 年的發展,穩定支撐歷年大促活動。以 2019 年“雙 11”當天資料為例,阿里巴巴的分散式系統創單峰值為每秒 54.4 萬筆,實時計算處理為每秒 25.5 億筆。阿里巴巴在服務化領域的實踐,已透過 Apache Dubbo、Nacos、Sentinel、Seata、Chaos Blade 等開源專案分享給業界, 同時,這些元件與 Spring Cloud的整合 Spring Cloud Alibaba 已成為 Spring Cloud Netflix 的繼任者。
雖然隨著雲原生浪潮的興起,服務化原則不斷演進、落地於實際業務,但企業在實際落地過程中也會遇到不少的挑戰。比如,與自建資料中心相比,公有云下的服務化可能存在巨大的資源池,使得機器錯誤率顯著提高;按需付費增加了擴縮容的操作頻度;新的環境要求應用啟動更快、應用與應用之間無強依賴關係、應用能夠在不同規格的節點之間隨意排程等諸多需要考慮的實際問題。但可以預見的是,這些問題會隨著雲原生架構的不斷演進而得到逐一解決。
彈性原則是指系統部署規模可以隨著業務量變化自動調整大小,而無須根據事先的容量規劃準備固定的硬體和軟體資源。優秀的彈效能力不僅能夠改變企業的 IT 成本模式,使得企業不用再考慮額外的軟硬體資源成本支出(閒置成本),也能更好地支援業務規模的爆發式擴張,不再因為軟硬體資源儲備不足而留下遺憾。
在雲原生時代,企業構建 IT 系統的門檻大幅降低,這極大地提升了企業將業務規劃落地為產品與服務的效率。這一點在移動網際網路和遊戲行業中顯得尤為突出。一款應用成為爆款後,其使用者數量呈現指數級增長的案例不在少數。而業務呈指數級增長會對企業 IT 系統的效能帶來巨大考驗。面對這樣的挑戰,在傳統架構中,通常是開發人員、運維人員疲於調優系統效能,但是,即使他們使出渾身解數,也未必能夠完全解決系統的瓶頸問題, 最終因系統無法應對不斷湧入的海量使用者而造成應用癱瘓。
除了面臨業務呈指數級增長的考驗之外,業務的峰值特徵將是另一個重要的挑戰。比如,電影票訂票系統下午時段的流量遠超凌晨時段,而週末的流量相比工作日甚至會翻好幾倍;還有外賣訂餐系統,在午餐和晚餐前後往往會出現訂單峰值時段。在傳統架構中,為了應對這類具有明顯峰值特徵的場景,企業需要為峰值時段的流量提前準備大量的計算、儲存及網路資源併為這些資源付費,而這些資源在大部分時間內卻處於閒置狀態。
因此,在雲原生時代,企業在構建 IT系統時,應該儘早考慮讓應用架構具備彈效能力,以便在快速發展的業務規模面前靈活應對各種場景需求,充分利用雲原生技術及成本優勢。
要想構建彈性的系統架構,需要遵循如下四個基本原則。
一個大型的複雜系統可能由成百上千個服務組成,架構師在設計架構時,需要遵循的原則是:將相關的邏輯放到一起,不相關的邏輯拆解到獨立的服務中,各服務之間透過標準的服務發現(Service Discovery)找到對方,並使用標準的介面進行通訊。各服務之間松耦合,這使得每一個服務能夠各自獨立地完成彈性伸縮,從而避免服務上下游關聯故障的發生。
按功能切割應用並沒有完全解決彈性的問題。一個應用被拆解為眾多服務後,隨著使用者流量的增長,單個服務最終也會遇到系統瓶頸。因此在設計上,每個服務都需要具備可水平切分的能力,以便將服務切分為不同的邏輯單元,由每個單元處理一部分使用者流量,從而使服務自身具備良好的擴充套件能力。這其中最大的挑戰在於資料庫系統,因為資料庫系統自身是有狀態的,所以合理地切分資料並提供正確的事務機制將是一個非常複雜的工程。不過,在雲原生時代,雲平臺所提供的雲原生資料庫服務可以解決大部分複雜的分散式系統問題,因此,如果企業是透過雲平臺提供的能力來構建彈性系統,自然就會擁有資料庫系統的彈效能力。
系統突發流量通常無法預計,因此常用的解決方案是,透過人工擴容系統的方式,使系統具備支援更大規模使用者訪問的能力。在完成架構拆分之後,彈性系統還需要具備自動化部署能力,以便根據既定的規則或者外部流量突發訊號觸發系統的自動化擴容功能,滿足系統對於縮短突發流量影響時長的及時性要求,同時在峰值時段結束後自動縮容系統,降低系統執行的資源佔用成本。
彈性系統需要提前設計異常應對方案,比如,對服務進行分級治理,在彈性機制失效、彈性資源不足或者流量峰值超出預期等異常情況下,系統架構需要具備服務降級的能力,透過降低部分非關鍵服務的質量,或者關閉部分增強功能來讓出資源,並擴容重要功能對應的服務容量,以確保產品的主要功能不受影響。
國內外已有很多成功構建大規模彈性系統的實踐案例,其中最具代表性的是阿里巴巴一年一度的“雙11”大促活動。為了應對相較於平時上百倍的流量峰值,阿里巴巴每年從阿里雲採買彈性資源部署自己的應用,並在“雙 11”活動之後釋放這一批資源,按需付費,從而大幅降低大促活動的資源成本。另一個例子是新浪微博的彈性架構,在社會熱點事件發生時,新浪微博透過彈性系統將應用容器擴容到阿里雲,以應對熱點事件導致的大量搜尋和轉發請求。系統透過分鐘級的按需擴容響應能力,大幅降低了熱搜所產生的資源成本。
隨著雲原生技術的發展,FaaS、Serverless 等技術生態逐步成熟,構建大規模彈性系統的難度逐步降低。當企業以 FaaS、Serverless 等技術理念作為系統架構的設計原則時,系統就具備了彈性伸縮的能力,企業也就無須額外為“維護彈性系統自身”付出成本。
與監控、業務探活、APM(Application Performance Management,應用效能管理)等系統提供的被動能力不同,可觀測性更強調主動性,在雲端計算這樣的分散式系統中,主動透過日誌、鏈路跟蹤和度量等手段,讓一次 App 點選所產生的多次服務呼叫耗時、返回值和引數都清晰可見,甚至可以下鑽到每次第三方軟體呼叫、SQL 請求、節點拓撲、網路響應等資訊中。運維、開發和業務人員透過這樣的觀測能力可以實時掌握軟體的執行情況,並獲得前所未有的關聯分析能力,以便不斷最佳化業務的健康度和使用者體驗。
隨著雲端計算的全面發展,企業的應用架構發生了顯著變化,正逐步從傳統的單體應用向微服務過渡。在微服務架構中,各服務之間松耦合的設計方式使得版本迭代更快、週期更短;基礎設施層中的 Kubernetes 等已經成為容器的預設平臺;服務可以透過流水線實現持續整合與部署。這些變化可將服務的變更風險降到最低,提升了研發的效率。
在微服務架構中,系統的故障點可能出現在任何地方,因此我們需要針對可觀測性進行體系化設計,以降低 MTTR(故障平均修復時間)。
要想構建可觀測性體系,需要遵循如下三個基本原則。
指標(Metric)、鏈路跟蹤(Tracing)和日誌(Logging)這三類資料是構建一個完整的可觀測性系統的“三大支柱”。而系統的可觀測性就是需要完整地採集、分析和展示這三類資料。
指標,指標是指在多個連續的時間週期裡用於度量的 KPI 數值。一般情況下,指標會按軟體架構進行分層,分為系統資源指標(如 CPU 使用率、磁碟使用率和網路頻寬情況等)、應用指標(如出錯率、服務等級協議 SLA、服務滿意度 APDEX、平均延時等)、業務指標(如使用者會話數、訂單數量和營業額等)。
鏈路跟蹤,鏈路跟蹤是指透過 TraceId 的唯一標識來記錄並還原發生一次分散式呼叫的完整過程,貫穿資料從瀏覽器或移動端經過伺服器處理,到執行 SQL 或發起遠端呼叫的整個過程。
日誌,日誌通常用來記錄應用執行的執行過程、程式碼除錯、錯誤異常等資訊,如 Nginx 日誌可以記錄遠端 IP、發生請求時間、資料大小等資訊。日誌資料需要集中化儲存,並具備可檢索的能力。
讓各資料之間產生更多的關聯,這一點對於一個可觀測性系統而言尤為重要。出現故障時,有效的關聯分析可以實現對故障的快速定界與定位,從而提升故障處理效率,減少不必要的損失。一般情況下,我們會將應用的伺服器地址、服務介面等資訊作為附加屬性,與指標、呼叫鏈、日誌等資訊繫結,並且賦予可觀測系統一定的定製能力,以便靈活滿足更加複雜的運維場景需求。
多種形式、多個維度的監控檢視可以幫助運維和開發人員快速發現系統瓶頸,消除系統隱患。監控資料的呈現形式應該不僅僅是指標趨勢圖表、柱狀圖等,還需要結合複雜的實際應用場景需要,讓檢視具備下鑽分析和定製能力,以滿足運維監控、版本釋出管理、故障排除等多場景需求。
隨著雲原生技術的發展,基於異構微服務架構的場景會越來越多、越來越複雜,而可觀測性是一切自動化能力構建的基礎。只有實現全面的可觀測性,才能真正提升系統的穩定性、降低 MTTR。因此,如何構建系統資源、容器、網路、應用、業務的全棧可觀測體系,是每個企業都需要思考的問題。
韌性是指當軟體所依賴的軟硬體元件出現異常時,軟體所表現出來的抵禦能力。這些異常通常包括硬體故障、硬體資源瓶頸(如 CPU 或網路卡頻寬耗盡)、業務流量超出軟體設計承受能力、影響機房正常工作的故障或災難、所依賴軟體發生故障等可能造成業務不可用的潛在影響因素。
業務上線之後,在執行期的大部分時間裡,可能還會遇到各種不確定性輸入和不穩定依賴的情況。當這些非正常場景出現時,業務需要儘可能地保證服務質量,滿足當前以聯網服務為代表的“永遠線上”的要求。因此,韌效能力的核心設計理念是面向失敗設計,即考慮如何在各種依賴不正常的情況下,減小異常對系統及服務質量的影響並儘快恢復正常。
韌性原則的實踐與常見架構主要包括服務非同步化能力、重試/限流/降級/熔斷/反壓、主從模式、叢集模式、多 AZ(Availability Zone,可用區)的高可用、單元化、跨區域(Region)容災、異地多活容災等。
下面結合具體案例詳細說明如何在大型系統中進行韌性設計。“雙 11”對於阿里巴巴來說是一場不能輸的戰役,因此其系統的設計在策略上需要嚴格遵循韌性原則。例如,在統一接入層透過流量清洗實現安全策略,防禦黑產攻擊;透過精細化限流策略確保峰值流量穩定,從而保障後端工作正常進行。為了提升全域性的高可用能力,阿里巴巴透過單元化機制實現了跨區域多活容災,透過同城容災機制實現同城雙活容災,從而最大程度提升 IDC(Internet Data Center,網際網路資料中心)的服務質量。在同一 IDC 內透過微服務和容器技術實現業務的無狀態遷移;透過多副本部署提高高可用能力;透過訊息完成微服務間的非同步解耦以降低服務的依賴性,同時提升系統吞吐量。從每個應用的角度,做好自身依賴梳理,設定降級開關,並透過故障演練不斷強化系統健壯性,保證阿里巴巴“雙11”大促活動正常穩定進行。
隨著數字化程式的加快,越來越多的數字化業務成為整個社會經濟正常運轉的基礎設施,但隨著支撐這些數字化業務的系統越來越複雜,依賴服務質量不確定的風險正變得越來越高,因此係統必須進行充分的韌性設計,以便更好地應對各種不確定性。尤其是在涉及核心行業的核心業務鏈路(如金融的支付鏈路、電商的交易鏈路)、業務流量入口、依賴複雜鏈路時,韌性設計至關重要。
技術是把“雙刃劍”,容器、微服務、DevOps 以及大量第三方元件的使用,在降低分散式複雜性和提升迭代速度的同時,也提高了軟體技術棧的複雜度,加大了元件規模,從而不可避免地導致了軟體交付的複雜性。如果控制不當,應用就會無法體會到雲原生技術的優勢。透過 IaC、GitOps、OAM、Operator 和大量自動化交付工具在 CI/CD(持續整合 /持續交付)流水線中的實踐,企業可以標準化企業內部的軟體交付過程,也可以在標準化的基礎上實現自動化,即透過配置資料自描述和麵向終態的交付過程,實現整個軟體交付和運維的自動化。
要想實現大規模的自動化,需要遵循如下四個基本原則。
實施自動化,首先要透過容器化、IaC、OAM 等手段,標準化業務執行的基礎設施,並進一步標準化對應用的定義乃至交付的流程。只有實現了標準化,才能解除業務對特定的人員和平臺的依賴,實現業務統一和大規模的自動化操作。
面向終態是指宣告式地描述基礎設施和應用的期望配置,持續關注應用的實際執行狀態,使系統自身反覆地變更和調整直至趨近終態的一種思想。面向終態的原則強調應該避 免直接透過工單系統、工作流系統組裝一系列過程式的 來變更應用,而是透過設定終態,讓系統自己決策如何執行變更。
自動化最終所能達到的效果不只取決於工具和系統的能力,更取決於為系統設定目標的人,因此要確保找到正確的目標設定人。在描述系統終態時,要將應用研發、應用運維、基礎設施運維這幾種主要角色所關注的配置分離開來,各個角色只需要設定自己所關注和擅長的系統配置,以便確保設定的系統終態是合理的。
要想實現全部過程自動化,一定要保證自動化的過程是可控的,對系統的影響是可預期的。我們不能期望自動化系統不犯錯誤,但可以保證即使是在出現異常的情況下,錯誤的影響範圍也是可控的、可接受的。因此,自動化系統在執行變更時,同樣需要遵循人工變更的最佳實踐,保證變更是可灰度執行的、執行結果是可觀測的、變更是可快速回滾的、變更影響是可追溯的。
業務例項的故障自愈是一個典型的過程自動化場景。業務遷移到雲上後,雲平臺雖然透過各種技術手段大幅降低了伺服器出故障的機率,但是卻並不能消除業務本身的軟體故障。軟體故障既包括應用軟體自身的缺陷導致的崩潰、資源不足導致的記憶體溢位(OOM)和負載過高導致的夯死等異常問題,也包括核心、守護程式(daemon 程式)等系統軟體的問題,更包括混部的其他應用或作業的干擾問題。隨著業務規模的增加,軟體出現故障的風險正變得越來越高。傳統的運維故障處理方式需要運維人員的介入,執行諸如重啟或者騰挪之類的修復操作,但在大規模場景下,運維人員往往疲於應對各種故障,甚至需要連夜加班進行操作,服務質量很難保證,不管是客戶,還是開發、運維人員,都無法滿意。
為了使故障能夠實現自動化修復,雲原生應用要求開發人員透過標準的宣告式配置,描述應用健康的探測方法和應用的啟動方法、應用啟動後需要掛載和註冊的服務發現以及配置管理資料庫(Configuration Management Data Base,CMDB)資訊。透過這些標準的配置,雲平臺可以反覆探測應用,並在故障發生時執行自動化修復操作。另外,為了防止故障探測本身可能存在的誤報問題,應用的運維人員還可以根據自身容量設定服務不可用例項的比例,讓雲平臺能夠在進行自動化故障恢復的同時保證業務可用性。例項故障自愈的實現,不僅把開發人員和運維人員從煩瑣的運維操作中解放了出來,而且可以及時處理各種故障,保證業務的連續性和服務的高可用性。
基於邊界模型的傳統安全架構設計,是在可信和不可信的資源之間架設一道牆,例如,公司內網是可信的,而因特網則是不可信的。在這種安全架構設計模式下,一旦入侵者滲透到邊界內,就能夠隨意訪問邊界內的資源了。而云原生架構的應用、員工遠端辦公模式的普及以及用手機等移動裝置處理工作的現狀,已經完全打破了傳統安全架構下的物理邊界。員工在家辦公也可以實現與合作方共享資料,因為應用和資料被託管到了雲上。
如今,邊界不再是由組織的物理位置來定義,而是已經擴充套件到了需要訪問組織資源和服務的所有地方,傳統的防火牆已經無法可靠且靈活地應對這種新邊界。因此,我們需要一種全新的安全架構,來靈活適應雲原生和移動時代環境的特性,不論員工在哪裡辦公,裝置在哪裡接入,應用部署在哪裡,資料的安全性都能夠得到有效保護。如果要實現這種新的安全架構,就要依託零信任模型。
傳統安全架構認為防火牆內的一切都是安全的,而零信任模型假設防火牆邊界已經被攻破,且每個請求都來自於不可信網路,因此每個請求都需要經過驗證。簡單來說,“永不信任,永遠驗證”。在零信任模型下,每個請求都要經過強認證,並基於安全策略得到驗證授權。與請求相關的使用者身份、裝置身份、應用身份等,都會作為核心資訊來判斷請求是否安全。
如果我們圍繞邊界來討論安全架構,那麼傳統安全架構的邊界是物理網路,而零信任安全架構的邊界則是身份,這個身份包括人的身份、裝置的身份、應用的身份等。要想實現零信任安全架構,需要遵循如下三個基本原則。
對每個訪問請求都進行認證和授權。認證和授權需要基於使用者身份、位置、裝置資訊、服務和工作負載資訊以及資料分級和異常檢測等資訊來進行。例如,對於企業內部應用之間的通訊,不能簡單地判定來源 IP是內部 IP 就直接授權訪問,而是應該判斷來源應用的身份和裝置等資訊,再結合當前的策略授權。
對於每個請求,只授予其在當下必需的許可權,且許可權策略應該能夠基於當前請求上下文自適應。例如,HR 部門的員工應該擁有訪問 HR相關應用的許可權,但不應該擁有訪問財務部門應用的許可權。
假設物理邊界被攻破,則需要嚴格控制安全爆炸半徑,將一個整體的網路切割成對使用者、裝置、應用感知的多個部分。對所有的會話加密,使用資料分析技術保證對安全狀態的可見性。
從傳統安全架構向零信任架構演進,會對軟體架構產生深刻的影響,具體體現在如下三個方面。
第一,不能基於 IP 配置安全策略。在雲原生架構下,不能假設 IP 與服務或應用是繫結的,這是由於自動彈性等技術的應用使得 IP 隨時可能發生變化,因此不能以 IP 代表應用的身份並在此基礎上建立安全策略。
第二,身份應該成為基礎設施。授權各服務之間的通訊以及人訪問服務的前提是已經明確知道訪問者的身份。在企業中,人的身份管理通常是安全基礎設施的一部分,但應用的身份也需要管理。
第三,標準的釋出流水線。在企業中,研發的工作通常是分散式的,包括程式碼的版本管理、構建、測試以及上線的過程,都是比較獨立的。這種分散的模式將會導致在實際生產環境中執行的服務的安全性得不到有效保證。如果可以標準化程式碼的版本管理、構建以及上線的流程,那麼應用釋出的安全性就能夠得到集中增強。
總體來說,整個零信任模型的建設包括身份、裝置、應用、基礎設施、網路、資料等幾個部分。零信任的實現是一個循序漸進的過程,例如,當組織內部傳輸的所有流量都沒有加密的時候,第一步應該先保證訪問者訪問應用的流量是加密的,然後再逐步實現所有流量的加密。如果採用雲原生架構,就可以直接使用雲平臺提供的安全基礎設施和服務,以便幫助企業快速實現零信任架構。
如今,技術與業務的發展速度都非常快,在工程實踐中很少有從一開始就能夠被明確定義並適用於整個軟體生命週期的架構模式,而是需要在一定範圍內不斷重構,以適應變 化的技術和業務需求。同理,雲原生架構本身也應該且必須具備持續演進的能力,而不是一個封閉式的、被設計後一成不變的架構。因此在設計時除了要考慮增量迭代、合理化目標選取等因素之外,還需要考慮組織(例如架構控制委員會)層面的架構治理和風險控制規範以及業務自身的特點,特別是在業務高速迭代的情況下,更應該重點考慮如何保證架構演進與業務發展之間的平衡。
演進式架構是指在軟體開發的初始階段,就透過具有可擴充套件性和松耦合的設計,讓後續可能發生的變更更加容易、升級性重構的成本更低,並且能夠發生在開發實踐、釋出實踐和整體敏捷度等軟體生命週期中的任何階段。
演進式架構之所以在工業實踐中具有重要意義,其根本原因在於,在現代軟體工程領域達成的共識中,變更都是很難預測的,其改造的成本也極其高昂。演進式架構並不能避免重構,但是它強調了架構的可演進性,即當整個架構因為技術、組織或者外部環境的變化需要向前演進時,專案整體依然能夠遵循強邊界上下文的原則,確保領域驅動設計中描述的邏輯劃分變成物理上的隔離。演進式架構透過標準化且具有高可擴充套件性的基礎設施體系,大量採納標準化應用模型與模組化運維能力等先進的雲原生應用架構實踐,實現了整個系統架構在物理上的模組化、可複用性與職責分離。在演進式架構中,系統的每個服務在結構層面與其他服務都是解耦的,替換服務就像替換樂高積木一樣方便。
在現代軟體工程實踐中,演進式架構在系統的不同層面有著不同的實踐與體現。
在面向業務研發的應用架構中,演進式架構通常與微服務設計密不可分。例如,在阿里巴巴的網際網路電商應用中(例如大家所熟悉的淘寶和天貓等),整個系統架構實際上被精細地設計成數千個邊界劃分明確的元件,其目的就是為希望做出非破壞性變更的開發人員 提供更大的便利,避免因為不適當的耦合將變更導向難以預料的方向,從而阻礙架構的演 進。可以發現,演進式架構的軟體都支援一定程度的模組化,這種模組化通常體現為經典的分層架構及微服務的最佳實踐。
而在平臺研發層面,演進式架構更多地體現為基於“能力”的架構(Capability Oriented Architecture,COA)。在 Kubernetes 等雲原生技術逐漸普及之後,基於標準化的雲原生基礎設施正迅速成為平臺架構的能力提供方,而以此為基礎的開放應用模型(Open ApplieationModel,OAM)理念,正是一種從應用架構視角出發,將標準化基礎設施按照能力進行模組化的 COA 實踐。
當前,演進式架構還處於快速成長與普及階段。不過,整個軟體工程領域已經達成共識,即軟體世界是不斷變化的,它是動態而非靜態的存在。架構也不是一個簡單的等式,它是持續過程的一種快照。所以無論是在業務應用還是在平臺研發層面,演進式架構都是一個必然的發展趨勢。業界大量架構更新的工程實踐都詮釋了一個問題,即由於忽略實現架構,且保持應用常新所要付出的精力是非常巨大的。但好的架構規劃可以幫助應用降低新技術的引入成本,這要求應用與平臺在架構層面滿足:架構標準化、職責分離與模組化。而在雲原生時代,開發應用模型(OAM)正在迅速成為演進式架構推進的重要助力。
我們可以看到雲原生架構的構建和演進都是以雲端計算的核心特性(例如,彈性、自動化、韌性)為基礎並結合業務目標以及特徵進行的,從而幫助企業和技術人員充分釋放雲端計算的技術紅利。隨著雲原生的不斷探索,各類技術不斷擴充套件,各類場景不斷豐富,雲原生架構也將不斷演進。但在這些變化過程中。典型的架構設計原則始終都有著重要意義,指導我們進行架構設計以及技術落地。
原文來自:
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/69955379/viewspace-2784168/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 雲原生架構及設計原則架構
- 雲原生架構成功的6大原則架構
- 360°透視:雲原生架構及設計原則架構
- 雲架構儉約之道:企業架構七大黃金法則架構
- Web開發的七個原則Web
- 雲原生架構概述架構
- Salesforce架構的10條原則Salesforce架構
- .NET 雲原生架構師訓練營(設計原則&&設計模式)--學習筆記架構設計模式筆記
- Apache 架構師總結的 30 條架構原則Apache架構
- SOLID架構設計原則Solid架構
- 分散式系統架構與雲原生—阿里雲《雲原生架構白皮書》導讀分散式架構阿里
- 快速瞭解雲原生架構架構
- 亞馬遜CTO的架構之道-儉約架構師的成本優先架構原則亞馬遜架構
- 【開源力量】雲原生架構概述架構
- 聊聊雲原生和微服務架構微服務架構
- 一個優秀的雲原生架構需要注意哪些地方架構
- 簡單介紹架構設計的原則!架構
- [雲原生微服務架構](十)微服務架構的基礎知識微服務架構
- Apache Druid 在 Shopee 的雲原生架構演進ApacheUI架構
- 深入探索雲原生流水線的架構設計架構
- 雲原生架構實施路線圖架構
- 架構設計的五大原則-SOLID架構Solid
- 搭建團隊架構的重要原則,你知道嗎?架構
- 雲端計算架構設計6大原則遵循了哪些?架構
- 架構整潔之道二(設計原則)架構
- 用友雲平臺,真正的雲原生架構,加速雲應用落地架構
- 重構的原則
- 2024年的雲原生架構需要哪些技術棧架構
- 微服務架構的4大設計原則和一個平臺實踐微服務架構
- 設計模式的七大原則(5) --開閉原則設計模式
- 【虹科乾貨】設計微服務架構的原則微服務架構
- 雲原生架構實施路線圖分析架構
- Dapr閃電說 - Dapr落地雲原生架構架構
- [雲原生微服務架構](九)入門HELM微服務架構
- 奈學p7雲原生架構師架構
- Apache 的架構師們遵循的 30 條設計原則Apache架構
- [分散式]架構設計原則--高併發分散式架構
- 軟體開發的七條原則