1.演算法執行效果圖預覽
(完整程式執行後無水印)
2.演算法執行軟體版本
matlab2022a
3.部分核心程式
(完整版程式碼包含詳細中文註釋和操作步驟影片)
LR = woa_idx(1); numHiddenUnits1 = floor(woa_idx(2))+1;% 定義隱藏層中LSTM單元的數量 numHiddenUnits2 = floor(woa_idx(3))+1;% 定義隱藏層中LSTM單元的數量 layers = func_model2(Dim,numHiddenUnits1,numHiddenUnits2); %訓練 [Net,INFO] =trainNetwork(Nsp_train2, NTsp_train, layers, options); IT =[1:length(INFO.TrainingLoss)]; Accuracy=INFO.TrainingRMSE; figure; plot(IT(1:1:end),Accuracy(1:1:end)); xlabel('epoch'); ylabel('RMSE'); %資料預測 Dpre1 = predict(Net, Nsp_train2); Dpre2 = predict(Net, Nsp_test2); %歸一化還原 T_sim1=Dpre1*Vmax2; T_sim2=Dpre2*Vmax2; %網路結構 analyzeNetwork(Net) figure subplot(211); plot(1: Num1, Tat_train,'-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.0,0.0]); hold on plot(1: Num1, T_sim1,'g',... 'LineWidth',2,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.9,0.0]); legend('真實值', '預測值') xlabel('預測樣本') ylabel('預測結果') grid on subplot(212); plot(1: Num1, Tat_train-T_sim1','-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.0,0.0]); xlabel('預測樣本') ylabel('預測誤差') grid on ylim([-50,50]); figure subplot(211); plot(1: Num2, Tat_test,'-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.0,0.0]); hold on plot(1: Num2, T_sim2,'g',... 'LineWidth',2,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.9,0.0]); legend('真實值', '預測值') xlabel('測試樣本') ylabel('測試結果') grid on subplot(212); plot(1: Num2, Tat_test-T_sim2','-bs',... 'LineWidth',1,... 'MarkerSize',6,... 'MarkerEdgeColor','k',... 'MarkerFaceColor',[0.9,0.0,0.0]); xlabel('預測樣本') ylabel('預測誤差') grid on ylim([-50,50]); save R2.mat Num2 Tat_test IT T_sim2 Accuracy 159
4.演算法理論概述
時間序列迴歸預測是資料分析的重要領域,旨在根據歷史資料預測未來時刻的數值。近年來,深度學習模型如卷積神經網路(Convolutional Neural Network, CNN)、lstm在時間序列預測中展現出顯著優勢。然而,模型引數的有效設定對預測效能至關重要。鯨魚最佳化(WOA)作為一種高效的全域性最佳化演算法,被引入用於最佳化深度學習模型的超引數。
4.1卷積神經網路(CNN)在時間序列中的應用
在時間序列資料中,CNN用於提取區域性特徵和模式。對於一個長度為T的時間序列資料X = [x_1, x_2, ..., x_T],透過卷積層可以生成一組特徵對映:
CNN透過多個卷積層和池化層的堆疊來提取輸入資料的特徵。每個卷積層都包含多個卷積核,用於捕捉不同的特徵。池化層則用於降低資料的維度,減少計算量並增強模型的魯棒性。
4.2 長短期記憶網路(LSTM)
LSTM是RNN的一種變體,特別擅長處理長序列依賴問題。它透過門控機制控制資訊的遺忘、更新和輸出,有效緩解了梯度消失/爆炸問題。
4.3 WOA最佳化演算法
WOA即Whale Optimization Algorithm(鯨魚最佳化演算法),是一種受自然界鯨魚捕食行為啟發的生物啟發式最佳化演算法,由Eslam Mohamed於2016年提出,常用於解決各種連續最佳化問題,包括函式最佳化、機器學習引數調整、工程設計等領域中的複雜最佳化任務。鯨魚最佳化演算法模擬了虎鯨的兩種主要覓食策略: Bubble-net attacking 和 Spiral updating 過程。