Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is:
[7]
[2, 2, 3]
Solution:
A recursive method.
1 public class Solution { 2 public List<List<Integer>> combinationSum(int[] candidates, int target) { 3 List<List<Integer>> resSet = new ArrayList<List<Integer>>(); 4 List<Integer> curRes = new ArrayList<Integer>(); 5 if (candidates.length==0) return resSet; 6 Arrays.sort(candidates); 7 int cur=0,end=candidates.length-1; 8 for (int i=0;i<candidates.length;i++) 9 if (candidates[i]>target){ 10 end = i-1; 11 break; 12 } 13 14 15 sumRecur(candidates,cur,end,target,resSet,curRes); 16 17 return resSet; 18 } 19 20 21 public void sumRecur(int[] candidates, int cur, int end, int valLeft, List<List<Integer>> resSet, List<Integer> curRes){ 22 if (valLeft==0){ 23 List<Integer> temp = new ArrayList<Integer>(); 24 temp.addAll(curRes); 25 resSet.add(temp); 26 return; 27 } 28 29 if (valLeft>= candidates[cur]){ 30 curRes.add(candidates[cur]); 31 sumRecur(candidates,cur,end,valLeft-candidates[cur],resSet,curRes); 32 curRes.remove(curRes.size()-1); 33 } 34 35 if (cur<end){ 36 sumRecur(candidates,cur+1,end,valLeft,resSet,curRes); 37 } 38 } 39 }