Netty原始碼分析之Reactor執行緒模型詳解

跟著Mic學架構發表於2021-11-22

上一篇文章,分析了Netty服務端啟動的初始化過程,今天我們來分析一下Netty中的Reactor執行緒模型

在分析原始碼之前,我們先分析,哪些地方用到了EventLoop?

  • NioServerSocketChannel的連線監聽註冊
  • NioSocketChannel的IO事件註冊

NioServerSocketChannel連線監聽

在AbstractBootstrap類的initAndRegister()方法中,當NioServerSocketChannel初始化完成後,會呼叫case標記位置的程式碼進行註冊。

final ChannelFuture initAndRegister() {
    Channel channel = null;
    try {
        channel = channelFactory.newChannel();
        init(channel);
    } catch (Throwable t) {
       
    }
   //註冊到boss執行緒的selector上。
    ChannelFuture regFuture = config().group().register(channel);
    if (regFuture.cause() != null) {
        if (channel.isRegistered()) {
            channel.close();
        } else {
            channel.unsafe().closeForcibly();
        }
    }
    return regFuture;
}

AbstractNioChannel.doRegister

按照程式碼的執行邏輯,最終會執行到AbstractNioChannel的doRegister()方法中。

@Override
protected void doRegister() throws Exception {
    boolean selected = false;
    for (;;) {
        try {
			//呼叫ServerSocketChannel的register方法,把當前服務端物件註冊到boss執行緒的selector上
            selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this);
            return;
        } catch (CancelledKeyException e) {
            if (!selected) {
                // Force the Selector to select now as the "canceled" SelectionKey may still be
                // cached and not removed because no Select.select(..) operation was called yet.
                eventLoop().selectNow();
                selected = true;
            } else {
                // We forced a select operation on the selector before but the SelectionKey is still cached
                // for whatever reason. JDK bug ?
                throw e;
            }
        }
    }
}

NioEventLoop的啟動過程

NioEventLoop是一個執行緒,它的啟動過程如下。

在AbstractBootstrap的doBind0方法中,獲取了NioServerSocketChannel中的NioEventLoop,然後使用它來執行繫結埠的任務。

private static void doBind0(
    final ChannelFuture regFuture, final Channel channel,
    final SocketAddress localAddress, final ChannelPromise promise) {

    //啟動
    channel.eventLoop().execute(new Runnable() {
        @Override
        public void run() {
            if (regFuture.isSuccess()) {
                channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);
            } else {
                promise.setFailure(regFuture.cause());
            }
        }
    });
}

SingleThreadEventExecutor.execute

然後一路執行到SingleThreadEventExecutor.execute方法中,呼叫startThread()方法啟動執行緒。

private void execute(Runnable task, boolean immediate) {
    boolean inEventLoop = inEventLoop();
    addTask(task);
    if (!inEventLoop) {
        startThread(); //啟動執行緒
        if (isShutdown()) {
            boolean reject = false;
            try {
                if (removeTask(task)) {
                    reject = true;
                }
            } catch (UnsupportedOperationException e) {
                // The task queue does not support removal so the best thing we can do is to just move on and
                // hope we will be able to pick-up the task before its completely terminated.
                // In worst case we will log on termination.
            }
            if (reject) {
                reject();
            }
        }
    }

    if (!addTaskWakesUp && immediate) {
        wakeup(inEventLoop);
    }
}

startThread

private void startThread() {
    if (state == ST_NOT_STARTED) {
        if (STATE_UPDATER.compareAndSet(this, ST_NOT_STARTED, ST_STARTED)) {
            boolean success = false;
            try {
                doStartThread(); //執行啟動過程
                success = true;
            } finally {
                if (!success) {
                    STATE_UPDATER.compareAndSet(this, ST_STARTED, ST_NOT_STARTED);
                }
            }
        }
    }
}

接著呼叫doStartThread()方法,通過executor.execute執行一個任務,在該任務中啟動了NioEventLoop執行緒

private void doStartThread() {
    assert thread == null;
    executor.execute(new Runnable() { //通過執行緒池執行一個任務
        @Override
        public void run() {
            thread = Thread.currentThread();
            if (interrupted) {
                thread.interrupt();
            }

            boolean success = false;
            updateLastExecutionTime();
            try {
                SingleThreadEventExecutor.this.run(); //呼叫boss的NioEventLoop的run方法,開啟輪詢
            }
            //省略....
        }
    });
}

NioEventLoop的輪詢過程

當NioEventLoop執行緒被啟動後,就直接進入到NioEventLoop的run方法中。

protected void run() {
    int selectCnt = 0;
    for (;;) {
        try {
            int strategy;
            try {
                strategy = selectStrategy.calculateStrategy(selectNowSupplier, hasTasks());
                switch (strategy) {
                    case SelectStrategy.CONTINUE:
                        continue;

                    case SelectStrategy.BUSY_WAIT:

                    case SelectStrategy.SELECT:
                        long curDeadlineNanos = nextScheduledTaskDeadlineNanos();
                        if (curDeadlineNanos == -1L) {
                            curDeadlineNanos = NONE; // nothing on the calendar
                        }
                        nextWakeupNanos.set(curDeadlineNanos);
                        try {
                            if (!hasTasks()) {
                                strategy = select(curDeadlineNanos);
                            }
                        } finally {
                            // This update is just to help block unnecessary selector wakeups
                            // so use of lazySet is ok (no race condition)
                            nextWakeupNanos.lazySet(AWAKE);
                        }
                        // fall through
                    default:
                }
            } catch (IOException e) {
                // If we receive an IOException here its because the Selector is messed up. Let's rebuild
                // the selector and retry. https://github.com/netty/netty/issues/8566
                rebuildSelector0();
                selectCnt = 0;
                handleLoopException(e);
                continue;
            }

            selectCnt++;
            cancelledKeys = 0;
            needsToSelectAgain = false;
            final int ioRatio = this.ioRatio;
            boolean ranTasks;
            if (ioRatio == 100) {
                try {
                    if (strategy > 0) {
                        processSelectedKeys();
                    }
                } finally {
                    // Ensure we always run tasks.
                    ranTasks = runAllTasks();
                }
            } else if (strategy > 0) {
                final long ioStartTime = System.nanoTime();
                try {
                    processSelectedKeys();
                } finally {
                    // Ensure we always run tasks.
                    final long ioTime = System.nanoTime() - ioStartTime;
                    ranTasks = runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
                }
            } else {
                ranTasks = runAllTasks(0); // This will run the minimum number of tasks
            }

            if (ranTasks || strategy > 0) {
                if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS && logger.isDebugEnabled()) {
                    logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",
                                 selectCnt - 1, selector);
                }
                selectCnt = 0;
            } else if (unexpectedSelectorWakeup(selectCnt)) { // Unexpected wakeup (unusual case)
                selectCnt = 0;
            }
        } catch (CancelledKeyException e) {
            // Harmless exception - log anyway
            if (logger.isDebugEnabled()) {
                logger.debug(CancelledKeyException.class.getSimpleName() + " raised by a Selector {} - JDK bug?",
                             selector, e);
            }
        } catch (Error e) {
            throw (Error) e;
        } catch (Throwable t) {
            handleLoopException(t);
        } finally {
            // Always handle shutdown even if the loop processing threw an exception.
            try {
                if (isShuttingDown()) {
                    closeAll();
                    if (confirmShutdown()) {
                        return;
                    }
                }
            } catch (Error e) {
                throw (Error) e;
            } catch (Throwable t) {
                handleLoopException(t);
            }
        }
    }
}

NioEventLoop的執行流程

NioEventLoop中的run方法是一個無限迴圈的執行緒,在該迴圈中主要做三件事情,如圖9-1所示。

image-20210913145936343

圖9-1
  • 輪詢處理I/O事件(select),輪詢Selector選擇器中已經註冊的所有Channel的I/O就緒事件
  • 處理I/O事件,如果存在已經就緒的Channel的I/O事件,則呼叫processSelectedKeys進行處理
  • 處理非同步任務(runAllTasks),Reactor執行緒有一個非常重要的職責,就是處理任務佇列中的非I/O任務,Netty提供了ioRadio引數用來調整I/O時間和任務處理的時間比例。

輪詢I/O就緒事件

我們先來看I/O時間相關的程式碼片段:

  1. 通過selectStrategy.calculateStrategy(selectNowSupplier, hasTasks())獲取當前的執行策略
  2. 根據不同的策略,用來控制每次輪詢時的執行策略。
protected void run() {
        int selectCnt = 0;
        for (;;) {
            try {
                int strategy;
                try {
                    strategy = selectStrategy.calculateStrategy(selectNowSupplier, hasTasks());
                    switch (strategy) {
                    case SelectStrategy.CONTINUE:
                        continue;

                    case SelectStrategy.BUSY_WAIT:
                        // fall-through to SELECT since the busy-wait is not supported with NIO

                    case SelectStrategy.SELECT:
                        long curDeadlineNanos = nextScheduledTaskDeadlineNanos();
                        if (curDeadlineNanos == -1L) {
                            curDeadlineNanos = NONE; // nothing on the calendar
                        }
                        nextWakeupNanos.set(curDeadlineNanos);
                        try {
                            if (!hasTasks()) {
                                strategy = select(curDeadlineNanos);
                            }
                        } finally {
                            // This update is just to help block unnecessary selector wakeups
                            // so use of lazySet is ok (no race condition)
                            nextWakeupNanos.lazySet(AWAKE);
                        }
                        // fall through
                    default:
                    }
                }
                //省略....
            }
        }
}

selectStrategy處理邏輯

@Override
public int calculateStrategy(IntSupplier selectSupplier, boolean hasTasks) throws Exception {
    return hasTasks ? selectSupplier.get() : SelectStrategy.SELECT;
}

如果hasTasks為true,表示當前NioEventLoop執行緒存在非同步任務的情況下,則呼叫selectSupplier.get(),否則直接返回SELECT

其中selectSupplier.get()的定義如下:

private final IntSupplier selectNowSupplier = new IntSupplier() {
    @Override
    public int get() throws Exception {
        return selectNow();
    }
};

該方法中呼叫的是selectNow()方法,這個方法是Selector選擇器中的提供的非阻塞方法,執行後會立刻返回。

  • 如果當前已經有就緒的Channel,則會返回對應就緒Channel的數量
  • 否則,返回0.

分支處理

在上面一個步驟中獲得了strategy之後,會根據不同的結果進行分支處理。

  • CONTINUE,表示需要重試。
  • BUSY_WAIT,由於在NIO中並不支援BUSY_WAIT,所以BUSY_WAIT和SELECT的執行邏輯是一樣的
  • SELECT,表示需要通過select方法獲取就緒的Channel列表,當NioEventLoop中不存在非同步任務時,也就是任務佇列為空,則返回該策略。
switch (strategy) {
    case SelectStrategy.CONTINUE:
        continue;

    case SelectStrategy.BUSY_WAIT:
        // fall-through to SELECT since the busy-wait is not supported with NIO

    case SelectStrategy.SELECT:
        long curDeadlineNanos = nextScheduledTaskDeadlineNanos();
        if (curDeadlineNanos == -1L) {
            curDeadlineNanos = NONE; // nothing on the calendar
        }
        nextWakeupNanos.set(curDeadlineNanos);
        try {
            if (!hasTasks()) {
                strategy = select(curDeadlineNanos);
            }
        } finally {
            // This update is just to help block unnecessary selector wakeups
            // so use of lazySet is ok (no race condition)
            nextWakeupNanos.lazySet(AWAKE);
        }
        // fall through
    default:
}

SelectStrategy.SELECT

當NioEventLoop執行緒中不存在非同步任務時,則開始執行SELECT策略

//下一次定時任務觸發截至時間,預設不是定時任務,返回 -1L
long curDeadlineNanos = nextScheduledTaskDeadlineNanos();
if (curDeadlineNanos == -1L) {
    curDeadlineNanos = NONE; // nothing on the calendar
}
nextWakeupNanos.set(curDeadlineNanos);
try {
    if (!hasTasks()) {
        //2. taskQueue中任務執行完,開始執行select進行阻塞
        strategy = select(curDeadlineNanos);
    }
} finally {
    // This update is just to help block unnecessary selector wakeups
    // so use of lazySet is ok (no race condition)
    nextWakeupNanos.lazySet(AWAKE);
}

select方法定義如下,預設情況下deadlineNanos=NONE,所以會呼叫select()方法阻塞。

private int select(long deadlineNanos) throws IOException {
    if (deadlineNanos == NONE) {
        return selector.select();
    }
    //計算select()方法的阻塞超時時間
    long timeoutMillis = deadlineToDelayNanos(deadlineNanos + 995000L) / 1000000L;
    return timeoutMillis <= 0 ? selector.selectNow() : selector.select(timeoutMillis);
}

最終返回就緒的channel個數,後續的邏輯中會根據返回的就緒channel個數來決定執行邏輯。

NioEventLoop.run中的業務處理

業務處理的邏輯相對來說比較容易理解

  • 如果有就緒的channel,則處理就緒channel的IO事件
  • 處理完成後同步執行非同步佇列中的任務。
  • 另外,這裡為了解決Java NIO中的空轉問題,通過selectCnt記錄了空轉次數,一次迴圈發生了空轉(既沒有IO需要處理、也沒有執行任何任務),那麼記錄下來(selectCnt); ,如果連續發生空轉(selectCnt達到一定值),netty認為觸發了NIO的BUG(unexpectedSelectorWakeup處理);

Java Nio中有一個bug,Java nio在Linux系統下的epoll空輪詢問題。也就是在select()方法中,及時就緒的channel為0,也會從本來應該阻塞的操作中被喚醒,從而導致CPU 使用率達到100%。

@Override
protected void run() {
    int selectCnt = 0;
    for (;;) {
        //省略....
        selectCnt++;//selectCnt記錄的是無功而返的select次數,即eventLoop空轉的次數,為解決NIO BUG
        cancelledKeys = 0;
        needsToSelectAgain = false;
        final int ioRatio = this.ioRatio;
        boolean ranTasks;
        if (ioRatio == 100) { //ioRadio執行時間佔比是100%,預設是50%
            try {
                if (strategy > 0) { //strategy>0表示存在就緒的SocketChannel
                    processSelectedKeys(); //執行就緒SocketChannel的任務
                }
            } finally {
             //注意,將ioRatio設定為100,並不代表任務不執行,反而是每次將任務佇列執行完
                ranTasks = runAllTasks(); //確保總是執行佇列中的任務
            }
        } else if (strategy > 0) { //strategy>0表示存在就緒的SocketChannel
            final long ioStartTime = System.nanoTime(); //io時間處理開始時間
            try {
                processSelectedKeys(); //開始處理IO就緒事件
            } finally {
                // io事件執行結束時間
                final long ioTime = System.nanoTime() - ioStartTime;
                //基於本次迴圈處理IO的時間,ioRatio,計算出執行任務耗時的上限,也就是隻允許處理多長時間非同步任務
                ranTasks = runAllTasks(ioTime * (100 - ioRatio) / ioRatio);
            }
        } else {
            //這個分支代表:strategy=0,ioRatio<100,此時任務限時=0,意為:儘量少地執行非同步任務
            //這個分支和strategy>0實際是一碼事,程式碼簡化了一下而已
            ranTasks = runAllTasks(0); // This will run the minimum number of tasks
        }

        if (ranTasks || strategy > 0) { //ranTasks=true,或strategy>0,說明eventLoop幹活了,沒有空轉,清空selectCnt
            if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS && logger.isDebugEnabled()) {
                logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",
                             selectCnt - 1, selector);
            }
            selectCnt = 0;
        } 
         //unexpectedSelectorWakeup處理NIO BUG
        else if (unexpectedSelectorWakeup(selectCnt)) { // Unexpected wakeup (unusual case)
            selectCnt = 0;
        }
    }
}

processSelectedKeys

通過在select方法中,我們可以獲得就緒的I/O事件數量,從而觸發執行processSelectedKeys方法。

private void processSelectedKeys() {
    if (selectedKeys != null) {
        processSelectedKeysOptimized();
    } else {
        processSelectedKeysPlain(selector.selectedKeys());
    }
}

處理I/O事件時,有兩個邏輯分支處理:

  • 一種是處理Netty優化過的selectedKeys,
  • 另一種是正常的處理邏輯

processSelectedKeys方法中根據是否設定了selectedKeys來判斷使用哪種策略,預設使用的是Netty優化過的selectedKeys,它返回的物件是SelectedSelectionKeySet

processSelectedKeysOptimized

private void processSelectedKeysOptimized() {
    for (int i = 0; i < selectedKeys.size; ++i) {
        //1. 取出IO事件以及對應的channel
        final SelectionKey k = selectedKeys.keys[i];
        selectedKeys.keys[i] = null;//k的引用置null,便於gc回收,也表示該channel的事件處理完成避免重複處理

        final Object a = k.attachment(); //獲取儲存在當前channel中的attachment,此時應該是NioServerSocketChannel
		//處理當前的channel
        if (a instanceof AbstractNioChannel) {
             //對於boss NioEventLoop,輪詢到的基本是連線事件,後續的事情就是通過他的pipeline將連線扔給一個worker NioEventLoop處理
            //對於worker NioEventLoop來說,輪循道的基本商是IO讀寫事件,後續的事情就是通過他的pipeline將讀取到的位元組流傳遞給每個channelHandler來處理
            processSelectedKey(k, (AbstractNioChannel) a);
        } else {
            @SuppressWarnings("unchecked")
            NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a;
            processSelectedKey(k, task);
        }
		
        if (needsToSelectAgain) {
            // null out entries in the array to allow to have it GC'ed once the Channel close
            // See https://github.com/netty/netty/issues/2363
            selectedKeys.reset(i + 1);

            selectAgain();
            i = -1;
        }
    }
}

processSelectedKey

private void processSelectedKey(SelectionKey k, AbstractNioChannel ch) {
    final AbstractNioChannel.NioUnsafe unsafe = ch.unsafe();
    if (!k.isValid()) {
        final EventLoop eventLoop;
        try {
            eventLoop = ch.eventLoop();
        } catch (Throwable ignored) {
           
        }
        if (eventLoop == this) {
            // close the channel if the key is not valid anymore
            unsafe.close(unsafe.voidPromise());
        }
        return;
    }

    try {
        int readyOps = k.readyOps(); //獲取當前key所屬的操作型別
      
        if ((readyOps & SelectionKey.OP_CONNECT) != 0) {//如果是連線型別
            int ops = k.interestOps();
            ops &= ~SelectionKey.OP_CONNECT;
            k.interestOps(ops);

            unsafe.finishConnect();
        }
        if ((readyOps & SelectionKey.OP_WRITE) != 0) { //如果是寫型別
            ch.unsafe().forceFlush();
        }
		//如果是讀型別或者ACCEPT型別。則執行unsafe.read()方法,unsafe的例項物件為 NioMessageUnsafe
        if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
            unsafe.read();
        }
    } catch (CancelledKeyException ignored) {
        unsafe.close(unsafe.voidPromise());
    }
}

NioMessageUnsafe.read()

假設此時是一個讀操作,或者是客戶端建立連線,那麼程式碼執行邏輯如下,

@Override
public void read() {
    assert eventLoop().inEventLoop();
    final ChannelConfig config = config();
    final ChannelPipeline pipeline = pipeline(); //如果是第一次建立連線,此時的pipeline是ServerBootstrapAcceptor
    final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
    allocHandle.reset(config);

    boolean closed = false;
    Throwable exception = null;
    try {
        try {
            do {
                int localRead = doReadMessages(readBuf);
                if (localRead == 0) {
                    break;
                }
                if (localRead < 0) {
                    closed = true;
                    break;
                }

                allocHandle.incMessagesRead(localRead);
            } while (continueReading(allocHandle));
        } catch (Throwable t) {
            exception = t;
        }

        int size = readBuf.size();
        for (int i = 0; i < size; i ++) {
            readPending = false;
            pipeline.fireChannelRead(readBuf.get(i));  //呼叫pipeline中的channelRead方法
        }
        readBuf.clear();
        allocHandle.readComplete();
        pipeline.fireChannelReadComplete();

        if (exception != null) {
            closed = closeOnReadError(exception);

            pipeline.fireExceptionCaught(exception); //呼叫pipeline中的ExceptionCaught方法
        }

        if (closed) {
            inputShutdown = true;
            if (isOpen()) {
                close(voidPromise());
            }
        }
    } finally {
        if (!readPending && !config.isAutoRead()) {
            removeReadOp();
        }
    }
}

SelectedSelectionKeySet的優化

Netty中自己封裝實現了一個SelectedSelectionKeySet,用來優化原本SelectorKeys的結構,它是怎麼進行優化的呢?先來看它的程式碼定義

final class SelectedSelectionKeySet extends AbstractSet<SelectionKey> {

    SelectionKey[] keys;
    int size;

    SelectedSelectionKeySet() {
        keys = new SelectionKey[1024];
    }

    @Override
    public boolean add(SelectionKey o) {
        if (o == null) {
            return false;
        }

        keys[size++] = o;
        if (size == keys.length) {
            increaseCapacity();
        }

        return true;
    }
}

SelectedSelectionKeySet內部使用的是SelectionKey陣列,所有在processSelectedKeysOptimized方法中可以直接通過遍歷陣列來取出就緒的I/O事件。

而原來的Set<SelectionKey>返回的是HashSet型別,兩者相比,SelectionKey[]不需要考慮雜湊衝突的問題,所以可以實現O(1)時間複雜度的add操作。

SelectedSelectionKeySet的初始化

netty通過反射的方式,把Selector物件內部的selectedKeys和publicSelectedKeys替換為SelectedSelectionKeySet。

原本的selectedKeys和publicSelectedKeys這兩個欄位都是HashSet型別,替換之後變成了SelectedSelectionKeySet。當有就緒的key時,會直接填充到SelectedSelectionKeySet的陣列中。後續只需要遍歷即可。

private SelectorTuple openSelector() {
    final Class<?> selectorImplClass = (Class<?>) maybeSelectorImplClass;
    final SelectedSelectionKeySet selectedKeySet = new SelectedSelectionKeySet();
    //使用反射
    Object maybeException = AccessController.doPrivileged(new PrivilegedAction<Object>() {
        @Override
        public Object run() {
            try {
                //Selector內部的selectedKeys欄位
                Field selectedKeysField = selectorImplClass.getDeclaredField("selectedKeys");
                //Selector內部的publicSelectedKeys欄位
                Field publicSelectedKeysField = selectorImplClass.getDeclaredField("publicSelectedKeys");

                if (PlatformDependent.javaVersion() >= 9 && PlatformDependent.hasUnsafe()) {
                    //獲取selectedKeysField欄位偏移量
                    long selectedKeysFieldOffset = PlatformDependent.objectFieldOffset(selectedKeysField);
                    //獲取publicSelectedKeysField欄位偏移量
                    long publicSelectedKeysFieldOffset =
                        PlatformDependent.objectFieldOffset(publicSelectedKeysField);

                    if (selectedKeysFieldOffset != -1 && publicSelectedKeysFieldOffset != -1) {
                        //替換為selectedKeySet
                        PlatformDependent.putObject(
                            unwrappedSelector, selectedKeysFieldOffset, selectedKeySet);
                        PlatformDependent.putObject(
                            unwrappedSelector, publicSelectedKeysFieldOffset, selectedKeySet);
                        return null;
                    }
                    // We could not retrieve the offset, lets try reflection as last-resort.
                }
                Throwable cause = ReflectionUtil.trySetAccessible(selectedKeysField, true);
                if (cause != null) {
                    return cause;
                }
                cause = ReflectionUtil.trySetAccessible(publicSelectedKeysField, true);
                if (cause != null) {
                    return cause;
                }
                selectedKeysField.set(unwrappedSelector, selectedKeySet);
                publicSelectedKeysField.set(unwrappedSelector, selectedKeySet);
                return null;
            } catch (NoSuchFieldException e) {
                return e;
            } catch (IllegalAccessException e) {
                return e;
            }
        }
    });
    if (maybeException instanceof Exception) {
        selectedKeys = null;
        Exception e = (Exception) maybeException;
        logger.trace("failed to instrument a special java.util.Set into: {}", unwrappedSelector, e);
        return new SelectorTuple(unwrappedSelector);
    }
    selectedKeys = selectedKeySet;
}

非同步任務的執行流程

分析完上面的流程後,我們繼續來看NioEventLoop中的run方法中,針對非同步任務的處理流程

@Override
protected void run() {
    int selectCnt = 0;
    for (;;) {
        ranTasks = runAllTasks();
    }
}

runAllTask

需要注意,NioEventLoop可以支援定時任務的執行,通過nioEventLoop.schedule()來完成。

protected boolean runAllTasks() {
    assert inEventLoop();
    boolean fetchedAll;
    boolean ranAtLeastOne = false;

    do {
        fetchedAll = fetchFromScheduledTaskQueue(); //合併定時任務到普通任務佇列
        if (runAllTasksFrom(taskQueue)) { //迴圈執行taskQueue中的任務
            ranAtLeastOne = true;
        }
    } while (!fetchedAll);  

    if (ranAtLeastOne) { //如果任務全部執行完成,記錄執行完完成時間
        lastExecutionTime = ScheduledFutureTask.nanoTime();
    }
    afterRunningAllTasks();//執行收尾任務
    return ranAtLeastOne;
}

fetchFromScheduledTaskQueue

遍歷scheduledTaskQueue中的任務,新增到taskQueue中。

private boolean fetchFromScheduledTaskQueue() {
    if (scheduledTaskQueue == null || scheduledTaskQueue.isEmpty()) {
        return true;
    }
    long nanoTime = AbstractScheduledEventExecutor.nanoTime();
    for (;;) {
        Runnable scheduledTask = pollScheduledTask(nanoTime);
        if (scheduledTask == null) {
            return true;
        }
        if (!taskQueue.offer(scheduledTask)) {
            // No space left in the task queue add it back to the scheduledTaskQueue so we pick it up again.
            scheduledTaskQueue.add((ScheduledFutureTask<?>) scheduledTask);
            return false;
        }
    }
}

任務新增方法execute

NioEventLoop內部有兩個非常重要的非同步任務佇列,分別是普通任務和定時任務佇列,針對這兩個佇列提供了兩個方法分別向兩個佇列中新增任務。

  • execute()
  • schedule()

其中,execute方法的定義如下。

private void execute(Runnable task, boolean immediate) {
    boolean inEventLoop = inEventLoop();
    addTask(task); //把當前任務新增到阻塞佇列中
    if (!inEventLoop) { //如果是非NioEventLoop
        startThread(); //啟動執行緒
        if (isShutdown()) { //如果當前NioEventLoop已經是停止狀態
            boolean reject = false;
            try {
                if (removeTask(task)) { 
                    reject = true;
                }
            } catch (UnsupportedOperationException e) {
                // The task queue does not support removal so the best thing we can do is to just move on and
                // hope we will be able to pick-up the task before its completely terminated.
                // In worst case we will log on termination.
            }
            if (reject) {
                reject();
            }
        }
    }

    if (!addTaskWakesUp && immediate) {
        wakeup(inEventLoop);
    }
}

Nio的空輪轉問題

所謂的空輪訓,是指我們在執行selector.select()方法時,如果沒有就緒的SocketChannel時,當前執行緒會被阻塞 。 而空輪詢是指當沒有就緒SocketChannel時,會被觸發喚醒。

而這個喚醒是沒有任何讀寫請求的,從而導致執行緒在做無效的輪詢,使得CPU佔用率較高。

導致這個問題的根本原因是:

在部分Linux的2.6的kernel中,poll和epoll對於突然中斷的連線socket會對返回的eventSet事件集合置為POLLHUP,也可能是POLLERR,eventSet事件集合發生了變化,這就可能導致Selector會被喚醒。這是與作業系統機制有關係的,JDK雖然僅僅是一個相容各個作業系統平臺的軟體,但很遺憾在JDK5和JDK6最初的版本中(嚴格意義上來將,JDK部分版本都是),這個問題並沒有解決,而將這個帽子拋給了作業系統方,這也就是這個bug最終一直到2013年才最終修復的原因,最終影響力太廣。

Netty是如何解決這個問題的呢?我們回到NioEventLoop的run方法中

@Override
protected void run() {
    int selectCnt = 0;
    for (;;) {
        //selectCnt記錄的是無功而返的select次數,即eventLoop空轉的次數,為解決NIO BUG
        selectCnt++; 
        //ranTasks=true,或strategy>0,說明eventLoop幹活了,沒有空轉,清空selectCnt
        if (ranTasks || strategy > 0) {
            //如果選擇操作計數器的值,大於最小選擇器重構閾值,則輸出log
            if (selectCnt > MIN_PREMATURE_SELECTOR_RETURNS && logger.isDebugEnabled()) {
                logger.debug("Selector.select() returned prematurely {} times in a row for Selector {}.",
                             selectCnt - 1, selector);
            }
            selectCnt = 0;
        } 
        //unexpectedSelectorWakeup處理NIO BUG
        else if (unexpectedSelectorWakeup(selectCnt)) { // Unexpected wakeup (unusual case)
            selectCnt = 0;
        }
    }
}

unexpectedSelectorWakeup

private boolean unexpectedSelectorWakeup(int selectCnt) {
    if (Thread.interrupted()) {
        if (logger.isDebugEnabled()) {
            logger.debug("Selector.select() returned prematurely because " +
                         "Thread.currentThread().interrupt() was called. Use " +
                         "NioEventLoop.shutdownGracefully() to shutdown the NioEventLoop.");
        }
        return true;
    }
    //如果選擇重構的閾值大於0, 預設值是512次、 並且當前觸發的空輪詢次數大於 512次。,則觸發重構
    if (SELECTOR_AUTO_REBUILD_THRESHOLD > 0 &&
        selectCnt >= SELECTOR_AUTO_REBUILD_THRESHOLD) {
        // The selector returned prematurely many times in a row.
        // Rebuild the selector to work around the problem.
        logger.warn("Selector.select() returned prematurely {} times in a row; rebuilding Selector {}.",
                    selectCnt, selector);
        rebuildSelector();
        return true;
    }
    return false;
}

rebuildSelector()

public void rebuildSelector() {
    if (!inEventLoop()) { //如果不是在eventLoop中執行,則使用非同步執行緒執行
        execute(new Runnable() {
            @Override
            public void run() {
                rebuildSelector0();
            }
        });
        return;
    }
    rebuildSelector0();
}

rebuildSelector0

這個方法的主要作用: 重新建立一個選擇器,替代當前事件迴圈中的選擇器

private void rebuildSelector0() {
    final Selector oldSelector = selector; //獲取老的selector選擇器
    final SelectorTuple newSelectorTuple; //定義新的選擇器

    if (oldSelector == null) { //如果老的選擇器為空,直接返回
        return;
    }

    try {
        newSelectorTuple = openSelector(); //建立一個新的選擇器
    } catch (Exception e) {
        logger.warn("Failed to create a new Selector.", e);
        return;
    }

    // Register all channels to the new Selector.
    int nChannels = 0;
    for (SelectionKey key: oldSelector.keys()) {//遍歷註冊到選擇器的選擇key集合
        Object a = key.attachment();
        try {
             //如果選擇key無效或選擇關聯的通道已經註冊到新的選擇器,則跳出當前迴圈
            if (!key.isValid() || key.channel().keyFor(newSelectorTuple.unwrappedSelector) != null) {
                continue;
            }
 			//獲取key的選擇關注事件集
            int interestOps = key.interestOps();
            key.cancel();//取消選擇key
	      //註冊選擇key到新的選擇器
            SelectionKey newKey = key.channel().register(newSelectorTuple.unwrappedSelector, interestOps, a);
            if (a instanceof AbstractNioChannel) {//如果是nio通道,則更新通道的選擇key
                // Update SelectionKey
                ((AbstractNioChannel) a).selectionKey = newKey;
            }
            nChannels ++;
        } catch (Exception e) {
            logger.warn("Failed to re-register a Channel to the new Selector.", e);
            if (a instanceof AbstractNioChannel) {
                AbstractNioChannel ch = (AbstractNioChannel) a;
                ch.unsafe().close(ch.unsafe().voidPromise());
            } else {
                @SuppressWarnings("unchecked")
                NioTask<SelectableChannel> task = (NioTask<SelectableChannel>) a;
                invokeChannelUnregistered(task, key, e);
            }
        }
    }
	//更新當前事件迴圈選擇器
    selector = newSelectorTuple.selector;
    unwrappedSelector = newSelectorTuple.unwrappedSelector;

    try {
        // time to close the old selector as everything else is registered to the new one
        oldSelector.close(); //關閉原始選擇器
    } catch (Throwable t) {
        if (logger.isWarnEnabled()) {
            logger.warn("Failed to close the old Selector.", t);
        }
    }

    if (logger.isInfoEnabled()) {
        logger.info("Migrated " + nChannels + " channel(s) to the new Selector.");
    }
}

從上述過程中我們發現,Netty解決NIO空輪轉問題的方式,是通過重建Selector物件來完成的,在這個重建過程中,核心是把Selector中所有的SelectionKey重新註冊到新的Selector上,從而巧妙的避免了JDK epoll空輪訓問題。

連線的建立及處理過程

在9.2.4.3節中,提到了當客戶端有連線或者讀事件傳送到服務端時,會呼叫NioMessageUnsafe類的read()方法。

public void read() {
    assert eventLoop().inEventLoop();
    final ChannelConfig config = config();
    final ChannelPipeline pipeline = pipeline();
    final RecvByteBufAllocator.Handle allocHandle = unsafe().recvBufAllocHandle();
    allocHandle.reset(config);

    boolean closed = false;
    Throwable exception = null;
    try {
        try {
            do {
                //如果有客戶端連線進來,則localRead為1,否則返回0
                int localRead = doReadMessages(readBuf);
                if (localRead == 0) {
                    break;
                }
                if (localRead < 0) {
                    closed = true;
                    break;
                }
				
                allocHandle.incMessagesRead(localRead); //累計增加read訊息數量
            } while (continueReading(allocHandle));
        } catch (Throwable t) {
            exception = t;
        }

        int size = readBuf.size(); //遍歷客戶端連線列表
        for (int i = 0; i < size; i ++) {
            readPending = false;
            pipeline.fireChannelRead(readBuf.get(i)); //呼叫pipeline中handler的channelRead方法。
        }
        readBuf.clear(); //清空集合
        allocHandle.readComplete();
        pipeline.fireChannelReadComplete(); //觸發pipeline中handler的readComplete方法

        if (exception != null) {
            closed = closeOnReadError(exception);

            pipeline.fireExceptionCaught(exception);
        }

        if (closed) {
            inputShutdown = true;
            if (isOpen()) {
                close(voidPromise());
            }
        }
    } finally {
        if (!readPending && !config.isAutoRead()) {
            removeReadOp();
        }
    }
}

pipeline.fireChannelRead(readBuf.get(i))

繼續來看pipeline的觸發方法,此時的pipeline組成,如果當前是連線事件,那麼pipeline = ServerBootstrap$ServerBootstrapAcceptor。

static void invokeChannelRead(final AbstractChannelHandlerContext next, Object msg) {
    final Object m = next.pipeline.touch(ObjectUtil.checkNotNull(msg, "msg"), next);
    EventExecutor executor = next.executor();
    if (executor.inEventLoop()) {
        next.invokeChannelRead(m); //獲取pipeline中的下一個節點,呼叫該handler的channelRead方法
    } else {
        executor.execute(new Runnable() {
            @Override
            public void run() {
                next.invokeChannelRead(m);
            }
        });
    }
}

ServerBootstrapAcceptor

ServerBootstrapAcceptor是NioServerSocketChannel中一個特殊的Handler,專門用來處理客戶端連線事件,該方法中核心的目的是把針對SocketChannel的handler連結串列,新增到當前NioSocketChannel中的pipeline中。

public void channelRead(ChannelHandlerContext ctx, Object msg) {
    final Channel child = (Channel) msg;

    child.pipeline().addLast(childHandler);  //把服務端配置的childHandler,新增到當前NioSocketChannel中的pipeline中

    setChannelOptions(child, childOptions, logger); //設定NioSocketChannel的屬性
    setAttributes(child, childAttrs); 

    try {
        //把當前的NioSocketChannel註冊到Selector上,並且監聽一個非同步事件。
        childGroup.register(child).addListener(new ChannelFutureListener() {
            @Override
            public void operationComplete(ChannelFuture future) throws Exception {
                if (!future.isSuccess()) {
                    forceClose(child, future.cause());
                }
            }
        });
    } catch (Throwable t) {
        forceClose(child, t);
    }
}

pipeline的構建過程

9.6.2節中,child其實就是一個NioSocketChannel,它是在NioServerSocketChannel中,當接收到一個新的連結時,建立物件。

@Override
protected int doReadMessages(List<Object> buf) throws Exception {
    SocketChannel ch = SocketUtils.accept(javaChannel());

    try {
        if (ch != null) {
            buf.add(new NioSocketChannel(this, ch)); //這裡
            return 1;
        }
    } catch (Throwable t) {
        logger.warn("Failed to create a new channel from an accepted socket.", t);

        try {
            ch.close();
        } catch (Throwable t2) {
            logger.warn("Failed to close a socket.", t2);
        }
    }

    return 0;
}

而NioSocketChannel在構造時,呼叫了父類AbstractChannel中的構造方法,初始化了一個pipeline.

protected AbstractChannel(Channel parent) {
    this.parent = parent;
    id = newId();
    unsafe = newUnsafe();
    pipeline = newChannelPipeline();
}

DefaultChannelPipeline

pipeline的預設例項是DefaultChannelPipeline,構造方法如下。

protected DefaultChannelPipeline(Channel channel) {
    this.channel = ObjectUtil.checkNotNull(channel, "channel");
    succeededFuture = new SucceededChannelFuture(channel, null);
    voidPromise =  new VoidChannelPromise(channel, true);

    tail = new TailContext(this);
    head = new HeadContext(this);

    head.next = tail;
    tail.prev = head;
}

初始化了一個頭節點和尾節點,組成一個雙向連結串列,如圖9-2所示

image-20210913202248839

圖9-2

NioSocketChannel中handler鏈的構成

再回到ServerBootstrapAccepter的channelRead方法中,收到客戶端連線時,觸發了NioSocketChannel中的pipeline的新增

以下程式碼是DefaultChannelPipeline的addLast方法。

@Override
public final ChannelPipeline addLast(EventExecutorGroup executor, ChannelHandler... handlers) {
   ObjectUtil.checkNotNull(handlers, "handlers");

   for (ChannelHandler h: handlers) { //遍歷handlers列表,此時這裡的handler是ChannelInitializer回撥方法
       if (h == null) {
           break;
       }
       addLast(executor, null, h);
   }

   return this;
}

addLast

把服務端配置的ChannelHandler,新增到pipeline中,注意,此時的pipeline中儲存的是ChannelInitializer回撥方法。

@Override
public final ChannelPipeline addLast(EventExecutorGroup group, String name, ChannelHandler handler) {
    final AbstractChannelHandlerContext newCtx;
    synchronized (this) {
        checkMultiplicity(handler); //檢查是否有重複的handler
		//建立新的DefaultChannelHandlerContext節點
        newCtx = newContext(group, filterName(name, handler), handler);

        addLast0(newCtx);  //新增新的DefaultChannelHandlerContext到ChannelPipeline

      
        if (!registered) { 
            newCtx.setAddPending();
            callHandlerCallbackLater(newCtx, true);
            return this;
        }

        EventExecutor executor = newCtx.executor();
        if (!executor.inEventLoop()) {
            callHandlerAddedInEventLoop(newCtx, executor);
            return this;
        }
    }
    callHandlerAdded0(newCtx);
    return this;
}

這個回撥方法什麼時候觸發呼叫呢?其實就是在ServerBootstrapAcceptor這個類的channelRead方法中,註冊當前NioSocketChannel時

childGroup.register(child).addListener(new ChannelFutureListener() {}

最終按照之前我們上一節課原始碼分析的思路,定位到AbstractChannel中的register0方法中。

private void register0(ChannelPromise promise) {
            try {
                // check if the channel is still open as it could be closed in the mean time when the register
                // call was outside of the eventLoop
                if (!promise.setUncancellable() || !ensureOpen(promise)) {
                    return;
                }
                boolean firstRegistration = neverRegistered;
                doRegister();
                neverRegistered = false;
                registered = true;
				//
                pipeline.invokeHandlerAddedIfNeeded();

            }
}

callHandlerAddedForAllHandlers

pipeline.invokeHandlerAddedIfNeeded()方法,向下執行,會進入到DefaultChannelPipeline這個類中的callHandlerAddedForAllHandlers方法中

private void callHandlerAddedForAllHandlers() {
    final PendingHandlerCallback pendingHandlerCallbackHead;
    synchronized (this) {
        assert !registered;

        // This Channel itself was registered.
        registered = true;

        pendingHandlerCallbackHead = this.pendingHandlerCallbackHead;
        // Null out so it can be GC'ed.
        this.pendingHandlerCallbackHead = null;
    }
    //從等待被呼叫的handler 回撥列表中,取出任務來執行。
    PendingHandlerCallback task = pendingHandlerCallbackHead;
    while (task != null) {
        task.execute();
        task = task.next;
    }
}

我們發現,pendingHandlerCallbackHead這個單向連結串列,是在callHandlerCallbackLater方法中被新增的,

而callHandlerCallbackLater又是在addLast方法中新增的,所以構成了一個非同步完整的閉環。

ChannelInitializer.handlerAdded

task.execute()方法執行路徑是

callHandlerAdded0 -> ctx.callHandlerAdded ->

​ -------> AbstractChannelHandlerContext.callHandlerAddded()

​ ---------------> ChannelInitializer.handlerAdded

呼叫initChannel方法來初始化NioSocketChannel中的Channel.

@Override
public void handlerAdded(ChannelHandlerContext ctx) throws Exception {
    if (ctx.channel().isRegistered()) {
        // This should always be true with our current DefaultChannelPipeline implementation.
        // The good thing about calling initChannel(...) in handlerAdded(...) is that there will be no ordering
        // surprises if a ChannelInitializer will add another ChannelInitializer. This is as all handlers
        // will be added in the expected order.
        if (initChannel(ctx)) {

            // We are done with init the Channel, removing the initializer now.
            removeState(ctx);
        }
    }
}

接著,呼叫initChannel抽象方法,該方法由具體的實現類來完成。

private boolean initChannel(ChannelHandlerContext ctx) throws Exception {
    if (initMap.add(ctx)) { // Guard against re-entrance.
        try {
            initChannel((C) ctx.channel());
        } catch (Throwable cause) {
            // Explicitly call exceptionCaught(...) as we removed the handler before calling initChannel(...).
            // We do so to prevent multiple calls to initChannel(...).
            exceptionCaught(ctx, cause);
        } finally {
            ChannelPipeline pipeline = ctx.pipeline();
            if (pipeline.context(this) != null) {
                pipeline.remove(this);
            }
        }
        return true;
    }
    return false;
}

ChannelInitializer的實現,是我們自定義Server中的匿名內部類,ChannelInitializer。因此通過這個回撥來完成當前NioSocketChannel的pipeline的構建過程。

public static void main(String[] args){
    EventLoopGroup boss = new NioEventLoopGroup();
    //2 用於對接受客戶端連線讀寫操作的執行緒工作組
    EventLoopGroup work = new NioEventLoopGroup();
    ServerBootstrap b = new ServerBootstrap();
    b.group(boss, work)	//繫結兩個工作執行緒組
        .channel(NioServerSocketChannel.class)	//設定NIO的模式
        // 初始化繫結服務通道
        .childHandler(new ChannelInitializer<SocketChannel>() {
            @Override
            protected void initChannel(SocketChannel sc) throws Exception {
                sc.pipeline()
                    .addLast(
                    new LengthFieldBasedFrameDecoder(1024,
                                                     9,4,0,0))
                    .addLast(new MessageRecordEncoder())
                    .addLast(new MessageRecordDecode())
                    .addLast(new ServerHandler());
            }
        });
}

版權宣告:本部落格所有文章除特別宣告外,均採用 CC BY-NC-SA 4.0 許可協議。轉載請註明來自 Mic帶你學架構
如果本篇文章對您有幫助,還請幫忙點個關注和贊,您的堅持是我不斷創作的動力。歡迎關注「跟著Mic學架構」公眾號公眾號獲取更多技術乾貨!

相關文章