[原始碼分析] 分散式任務佇列 Celery 多執行緒模型 之 子程式
0x00 摘要
Celery是一個簡單、靈活且可靠的,處理大量訊息的分散式系統,專注於實時處理的非同步任務佇列,同時也支援任務排程。
在前文中,我們介紹了Celery 多執行緒模型,但是我們略過了子程式這一個階段,本文看看子程式如何繼續啟動。
我們依然先要提出幾個問題:
- 在啟動子程式之前,需要做哪些準備?
- 如何知道子程式要執行什麼命令?
- 如何構建父子程式通訊機制?
- 如何把父程式資訊傳遞給子程式?
- 目前,Celery 應用是在父程式中。
- 子程式如何得到 Celery 應用?
- 如何恢復 Celery 應用?
- 父程式如何知道子程式已經ready,從而可以給子程式安排工作?
- 子程式如何接受父程式安排的任務?
為了便於大家理解,我們先給出本文一個最終關係圖。
0x01 前文回顧
1.1 基類作用
前文我們講到,在 AsynPool 的基類 Pool(object) 之中,建立了各種 訊息處理函式,並且建立了子程式。
程式碼位置在:billiard/pool.py
具體程式碼如下,這裡 _create_worker_process 就建立了子程式。
class Pool(object):
def __init__(self, processes=None, initializer=None, initargs=(),
maxtasksperchild=None, timeout=None, soft_timeout=None,
lost_worker_timeout=None,
max_restarts=None, max_restart_freq=1,
on_process_up=None,
on_process_down=None,
on_timeout_set=None,
on_timeout_cancel=None,
threads=True,
semaphore=None,
putlocks=False,
allow_restart=False,
synack=False,
on_process_exit=None,
context=None,
max_memory_per_child=None,
enable_timeouts=False,
**kwargs):
for i in range(self._processes):
self._create_worker_process(i)
1.2 子程式抽象
如下程式碼建立子程式抽象。
for i in range(self._processes):
self._create_worker_process(i)
_create_worker_process 主要工作如下:
-
inq, outq, synq = self.get_process_queues() 拿到的是一個讀和寫的管道的抽象物件。這個管道是之前預先建立好的(就是上面 self.create_process_queues() 建立的)。主要是給即將 fork 的子程式用的,子程式會監聽這管道資料結構抽象例項中的讀事件,還可以從寫管道寫資料。
-
w,也就是 self.WorkerProcess 的例項,其實是對 fork 出來的子程式的一個抽象封裝。用來方便快捷的管理子程式,抽象成一個程式池,這個 w 會記錄 fork 出來的子程式的一些 meta 資訊,比如 pid,管道的讀寫的 fd 等等,並註冊在主程式中,主程式可以利用它進行任務分發;
-
把 WorkerProcess 的例項記錄在 self._pool;
-
w.start() 中包含具體的 fork 過程;
w.start() 中包含具體的 fork 過程。
def _create_worker_process(self, i):
w = self.WorkerProcess(self.Worker(
inq, outq, synq, self._initializer, self._initargs,
self._maxtasksperchild, sentinel, self._on_process_exit,
# Need to handle all signals if using the ipc semaphore,
# to make sure the semaphore is released.
sigprotection=self.threads,
wrap_exception=self._wrap_exception,
max_memory_per_child=self._max_memory_per_child,
on_ready_counter=on_ready_counter,
))
w.start() # 到了這裡
return w
1.3 Fork過程
Fork 的具體程式碼如下:
class BaseProcess(object):
'''
Process objects represent activity that is run in a separate process
The class is analagous to `threading.Thread`
'''
def run(self):
'''
Method to be run in sub-process; can be overridden in sub-class
'''
if self._target:
self._target(*self._args, **self._kwargs)
def start(self):
'''
Start child process
'''
assert self._popen is None, 'cannot start a process twice'
assert self._parent_pid == os.getpid(), \
'can only start a process object created by current process'
_cleanup()
self._popen = self._Popen(self)
self._sentinel = self._popen.sentinel
_children.add(self)
其中主要是 self._popen = self._Popen(self) 比較重要。
程式碼位於:billiard/context.py。
其中可以看到,因為作業系統的不同,具體使用也不同。
下面為 *nix 系統的各種 類fork函式。
class ForkProcess(process.BaseProcess):
_start_method = 'fork'
@staticmethod
def _Popen(process_obj):
from .popen_fork import Popen
return Popen(process_obj)
class SpawnProcess(process.BaseProcess):
_start_method = 'spawn'
@staticmethod
def _Popen(process_obj):
from .popen_spawn_posix import Popen
return Popen(process_obj)
class ForkServerProcess(process.BaseProcess):
_start_method = 'forkserver'
@staticmethod
def _Popen(process_obj):
from .popen_forkserver import Popen
return Popen(process_obj)
下面為 windows系統。
class SpawnProcess(process.BaseProcess):
_start_method = 'spawn'
@staticmethod
def _Popen(process_obj):
from .popen_spawn_win32 import Popen
return Popen(process_obj)
於是我們就具體看看子程式如何進行處理。
0x02 預先準備
在子程式啟動之前,Celery 會做很多準備,比如構建子程式執行的命令,設定管道,傳遞父程式資訊等等。
2.1 總體準備流程
經過除錯我們發現,無論是windows或者*nix系統,除錯中都各有不便之處,所以我們下面以windows系統為例分析。
前文因為是 *nix 系統,所以子程式抽象是 ForkProcess, 本文因為是 windows,替換為 SpawnProcess
因為是windows 系統,所以我們呼叫到:
class SpawnProcess(process.BaseProcess):
_start_method = 'spawn'
@staticmethod
def _Popen(process_obj):
from .popen_spawn_win32 import Popen
return Popen(process_obj)
因此使用 from .popen_spawn_win32 import Popen
。
下面程式碼位於:billiard/popen_spawn_win32.py
主要功能如下:
-
首先呼叫 _winapi.CreatePipe(None, 0) 來得到 之前建立的 pipe 的讀寫管道;
-
其次呼叫 get_command_line 來拼湊出子程式執行命令,注意這裡傳遞的 pipe_handle 為 讀管道,parent_pid 就為父程式的pid,子程式中,*nix 和 windows 分別依據 pipe_handle 和 parent_pid 得到讀管道;
-
然後開啟讀管道,這個很重要;
-
再次呼叫 windows 系統方法 CreateProcess 來執行子程式;
-
因為已經開啟了讀管道,所以通過 reduction.dump(prep_data, to_child) 把父程式的關鍵輔助資訊傳遞給子程式,通過這些資訊子程式才可以解讀父程式資訊;
-
通過 reduction.dump(process_obj, to_child) 把父程式資訊傳遞給子程式,父程式資訊就為 SpawnProcess;
-
在父程式中,通過 _winapi.CloseHandle(rhandle) 關閉父程式的讀管道。這樣父程式,子程式就通過子程式的讀管道聯絡;
具體如下:
class Popen(object):
'''
Start a subprocess to run the code of a process object
'''
method = 'spawn'
sentinel = None
def __init__(self, process_obj):
os.environ["MULTIPROCESSING_FORKING_DISABLE"] = "1"
spawn._Django_old_layout_hack__save()
prep_data = spawn.get_preparation_data(process_obj._name)
# read end of pipe will be "stolen" by the child process
# -- see spawn_main() in spawn.py.
rhandle, whandle = _winapi.CreatePipe(None, 0)
wfd = msvcrt.open_osfhandle(whandle, 0)
cmd = spawn.get_command_line(parent_pid=os.getpid(),
pipe_handle=rhandle)
cmd = ' '.join('"%s"' % x for x in cmd)
with io.open(wfd, 'wb', closefd=True) as to_child:
# start process
try:
hp, ht, pid, tid = CreateProcess(
spawn.get_executable(), cmd,
None, None, False, 0, None, None, None)
close_thread_handle(ht)
except:
_winapi.CloseHandle(rhandle)
raise
# set attributes of self
self.pid = pid
self.returncode = None
self._handle = hp
self.sentinel = int(hp)
# send information to child
context.set_spawning_popen(self)
try:
reduction.dump(prep_data, to_child)
reduction.dump(process_obj, to_child)
finally:
context.set_spawning_popen(None)
我們下面具體看看這個準備流程中的幾個重要點。
2.2 獲取命令
首先,重要點是:呼叫 get_command_line 來拼湊出子程式執行命令。
程式碼位於:billiard/spawn.py。
就是拼接出一個celery執行命令。
def get_command_line(**kwds):
'''
Returns prefix of command line used for spawning a child process
'''
if getattr(sys, 'frozen', False):
return ([sys.executable, '--billiard-fork'] +
['%s=%r' % item for item in kwds.items()])
else:
prog = 'from billiard.spawn import spawn_main; spawn_main(%s)'
prog %= ', '.join('%s=%r' % item for item in kwds.items())
opts = util._args_from_interpreter_flags()
return [_python_exe] + opts + ['-c', prog, '--billiard-fork']
命令列結果就是類似於:
python -c 'from billiard.spawn import spawn_main; spawn_main(....)' -billiard+fork ..
2.3 呼叫 windows 系統方法
然後會呼叫windows 系統方法啟動子程式。
hp, ht, pid, tid = CreateProcess(
spawn.get_executable(), cmd,
None, None, False, 0, None, None, None)
因此,邏輯如下:
+-----------------------------+
| SpawnProcess |
| |
| |
| os.getpid() +-----------------+
| | |
| rhandle +---------------+ |
| Popen | | |
| + whandle | | |
| | | | |
+-----------------------------+ | |
| | |
| | |
| get_command_line | |
| | | .
| | |
v | |
v v
python -c 'from billiard.spawn import spawn_main; spawn_main(....)' --billiard+fork ..
+
|
|
|
| CreateProcess
|
|
|
v
+--------+--------+
| windows kernel |
+-----------------+
2.4 傳遞父程式資訊
因為已經開啟了讀管道,所以通過 reduction.dump(prep_data, to_child) 把父程式的關鍵輔助資訊傳遞給子程式,通過這些資訊才可以解讀父程式資訊。這裡父程式資訊 obj 就為 SpawnProcess 本身。
程式碼通過 picker 完成,具體如下:
def dump(obj, file, protocol=None):
'''Replacement for pickle.dump() using ForkingPickler.'''
ForkingPickler(file, protocol).dump(obj)
以及:
if PY3:
import copyreg
class ForkingPickler(pickle.Pickler):
'''Pickler subclass used by multiprocessing.'''
_extra_reducers = {}
_copyreg_dispatch_table = copyreg.dispatch_table
def __init__(self, *args):
super(ForkingPickler, self).__init__(*args)
self.dispatch_table = self._copyreg_dispatch_table.copy()
self.dispatch_table.update(self._extra_reducers)
@classmethod
def register(cls, type, reduce):
'''Register a reduce function for a type.'''
cls._extra_reducers[type] = reduce
@classmethod
def dumps(cls, obj, protocol=None):
buf = io.BytesIO()
cls(buf, protocol).dump(obj)
return buf.getbuffer()
@classmethod
def loadbuf(cls, buf, protocol=None):
return cls.loads(buf.getbuffer())
loads = pickle.loads
else:
class ForkingPickler(pickle.Pickler): # noqa
'''Pickler subclass used by multiprocessing.'''
dispatch = pickle.Pickler.dispatch.copy()
@classmethod
def register(cls, type, reduce):
'''Register a reduce function for a type.'''
def dispatcher(self, obj):
rv = reduce(obj)
self.save_reduce(obj=obj, *rv)
cls.dispatch[type] = dispatcher
@classmethod
def dumps(cls, obj, protocol=None):
buf = io.BytesIO()
cls(buf, protocol).dump(obj)
return buf.getvalue()
@classmethod
def loadbuf(cls, buf, protocol=None):
return cls.loads(buf.getvalue())
@classmethod
def loads(cls, buf, loads=pickle.loads):
if isinstance(buf, io.BytesIO):
buf = buf.getvalue()
return loads(buf)
至此,準備工作完畢,將會進入到子程式。
0x03 子程式啟動
既然已經通知了 windows,所以 windows 就進行系統呼叫。
3.1 從命令列進入
既然前面的命令列結果中明確提到了spawn_main:
python -c 'from billiard.spawn import spawn_main; spawn_main(....)' -billiard+fork ..
於是子程式從spawn_main啟動。
程式碼位於:billiard/spawn.py
def spawn_main(pipe_handle, parent_pid=None, tracker_fd=None):
'''
Run code specified by data received over pipe
'''
assert is_forking(sys.argv)
if sys.platform == 'win32':
import msvcrt
from .reduction import steal_handle
new_handle = steal_handle(parent_pid, pipe_handle)
fd = msvcrt.open_osfhandle(new_handle, os.O_RDONLY)
else:
from . import semaphore_tracker
semaphore_tracker._semaphore_tracker._fd = tracker_fd
fd = pipe_handle
exitcode = _main(fd) # 將會呼叫到這裡。
sys.exit(exitcode)
注意:
這裡的 pipe_handle 就為 傳遞進來的讀管道。parent_pid為父程式ID。子程式中,*nix 和 windows 分別依據 pipe_handle 和 parent_pid 得到讀管道。
此時邏輯為:
+
parent process | child process
+-----------------------------+ |
| SpawnProcess | |
| | |
| os.getpid()+-----------------+ |
| | | |
| rhandle +---------------+ | | +---------------+
| Popen | | | | | spawn_main |
| + whandle | | | | parent_pid | |
| | | | | | | |
+---+-------------------------+ | | | +---------------> | |
| | | | | | | fd |
| | | | | | +-----------> | ^ |
| | get_command_line | | | | | pipe_handle | | |
| | | | | | | +---------------+
| | | | | | | |
| v | | | | | ^ |
| v v | | | | |
python -c 'from billi|rd.spawn import spawn_main; spawn_main(....)' --billiard-fork ... | | | | |
| + + + | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | CreateProcess | | | | | | |
| | | +---------------------------------+ | | |
| | +---------------------------------------+ | |
| | | |
| | 1 +-----------------+ 2 | |
| +----------------------------------------------> | windows kernel | +---------------------+ |
| +-----------------+ |
| |
| |
+-----------------------------------------------------------------------------------------------------------+
3 reduction.dump(process_obj, to_child)
手機如下:
因此,程式進行呼叫 _main。
3.2 _main 讀取父程式關鍵資訊
前面提到,父程式會寫入關鍵資訊。所以子程式這裡開啟了讀管道,讀取父程式的關鍵資訊,這裡父程式資訊 就為 SpawnProcess 本身,因此子程式可以操作 SpawnProcess。
def _main(fd):
_Django_old_layout_hack__load()
with io.open(fd, 'rb', closefd=True) as from_parent:
process.current_process()._inheriting = True
try:
preparation_data = pickle.load(from_parent)
prepare(preparation_data)
_setup_logging_in_child_hack()
self = pickle.load(from_parent) #讀取父程式的關鍵資訊,就為SpawnProcess
finally:
del process.current_process()._inheriting
return self._bootstrap()
邏輯如下:
+
parent process | child process
+-----------------------------+ |
| SpawnProcess | |
| | |
| os.getpid()+-----------------+ |
| | | |
| rhandle +---------------+ | | +---------------+
| Popen | | | | | spawn_main |
| + whandle | | | | parent_pid | | 4 +-------------+
| | | | | | | self+--------> |SpawnProcess |
+---+-------------------------+ | | | +---------------> | | +------+------+
| | | | | | | fd | |
| | | | | | +-----------> | ^ | |
| | get_command_line | | | | | pipe_handle | | | 5 | _bootstrap()
| | | | | | | +---------------+ |
| | | | | | | | v
| v | | | | | ^ |
| v v | | | | |
python -c 'from billi|rd.spawn import spawn_main; spawn_main(....)' --billiard-fork ... | | | | |
| + + + | | | | |
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
| | CreateProcess | | | | | | |
| | | +---------------------------------+ | | |
| | +---------------------------------------+ | |
| | | |
| | 1 +-----------------+ 2 | |
| +----------------------------------------------> | windows kernel | +---------------------+ |
| +-----------------+ |
| |
| |
+-----------------------------------------------------------------------------------------------------------+
3 reduction.dump(process_obj, to_child)
手機如下:
3.3 SpawnProcess 啟動
既然子程式已經知道了SpawnProcess,因此呼叫到了 SpawnProcess 的基類。
程式碼位於:billiard/process.py。
class BaseProcess(object):
'''
Process objects represent activity that is run in a separate process
The class is analagous to `threading.Thread`
'''
3.3.1 _bootstrap 配置必要資訊
基類 billiard/process.py 之中,會通過 _bootstrap 來 配置必要資訊,比如 stdin ,然後呼叫 run。
def _bootstrap(self):
from . import util, context
global _current_process, _process_counter, _children
try:
# 設定 stdin等等
if self._start_method is not None:
context._force_start_method(self._start_method)
_process_counter = itertools.count(1)
_children = set()
if sys.stdin is not None:
try:
sys.stdin.close()
sys.stdin = open(os.devnull)
except (EnvironmentError, OSError, ValueError):
pass
old_process = _current_process
_set_current_process(self)
# 設定 logger等等
loggerDict = logging.Logger.manager.loggerDict
logger_names = list(loggerDict.keys())
logger_names.append(None) # for root logger
for name in logger_names:
if not name or not isinstance(loggerDict[name],
logging.PlaceHolder):
for handler in logging.getLogger(name).handlers:
handler.createLock()
logging._lock = threading.RLock()
try:
util._finalizer_registry.clear()
util._run_after_forkers()
finally:
# delay finalization of the old process object until after
# _run_after_forkers() is executed
del old_process
util.info('child process %s calling self.run()', self.pid)
try:
self.run() # 執行到這裡
exitcode = 0
finally:
util._exit_function()
return exitcode
3.3.2 啟動服務 Worker
SpawnProcess 繼續呼叫 run。
def run(self):
'''
Method to be run in sub-process; can be overridden in sub-class
'''
if self._target:
self._target(*self._args, **self._kwargs)
由前文可知道,
_target = {Worker} <celery.concurrency.asynpool.Worker object at 0x7f9ad358b240>
因此來到了 celery.concurrency.asynpool.Worker ,這就是子程式工作迴圈。
如下:
+
parent process | child process
+-----------------------------+ |
| SpawnProcess | |
| | |
| os.getpid()+-----------------+ |
| | | |
| rhandle +---------------+ | | +---------------+
| Popen | | | | | spawn_main |
| + whandle | | | | parent_pid | | 4 +-------------+
| | | | | | | self+--------> |SpawnProcess |
+---+-------------------------+ | | | +---------------> | | +------+------+
| | | | | | | fd | |
| | | | | | +-----------> | ^ | |
| | get_command_line | | | | | pipe_handle | | | 5 | _bootstrap()
| | | | | | | +---------------+ |
| | | | | | | | v
| v | | | | | ^ |
| v v | | | | | +----------+
python -c 'from billi|rd.spawn import spawn_main; spawn_main(....)' --billiard-fork ... | | | | | | Worker |
| + + + | | | | | | |
| | | | | | | | | +-----+----+
| | | | | | | | | |
| | | | | | | | | |
| | CreateProcess | | | | | | | |
| | | +---------------------------------+ | | | |
| | +---------------------------------------+ | | |
| | | | v
| | 1 +-----------------+ 2 | |
| +----------------------------------------------> | windows kernel | +---------------------+ |
| +-----------------+ |
| |
| |
+-----------------------------------------------------------------------------------------------------------+
3 reduction.dump(process_obj, to_child)
手機如下:
3.4 Worker 服務
程式碼位於 :celery/billiard/pool.py
進入 Worker 之後,就來到了 __call__
,主要功能如下:
+
parent process | child process
+-----------------------------+ |
| SpawnProcess | |
| | |
| os.getpid()+-----------------+ |
| | | |
| rhandle +---------------+ | | +---------------+
| Popen | | | | | spawn_main |
| + whandle | | | | parent_pid | | 4 +-------------+
| | | | | | | self+--------> |SpawnProcess |
+---+-------------------------+ | | | +---------------> | | +------+------+
| | | | | | | fd | |
| | | | | | +-----------> | ^ | |
| | get_command_line | | | | | pipe_handle | | | 5 | _bootstrap()
| | | | | | | +---------------+ |
| | | | | | | | v
| v | | | | | ^ |
| v v | | | | | +----------+
python -c 'from billi|rd.spawn import spawn_main; spawn_main(....)' --billiard-fork ... | | | | | | Worker |
| + + + | | | | | | |
| | | | | | | | | +-----+----+
| | | | | | | | | |
| | | | | | | | | |
| | CreateProcess | | | | | | | |
| | | +---------------------------------+ | | | |
| | +---------------------------------------+ | | |
| | | | v
| | 1 +-----------------+ 2 | |
| +----------------------------------------------> | windows kernel | +---------------------+ | __call__
| +-----------------+ |
| |
| |
+-----------------------------------------------------------------------------------------------------------+
3 reduction.dump(process_obj, to_child)
+
|
|
|
+
手機如下:
__call__
,主要功能如下:
-
使用 _make_child_methods 配置 監聽 任務 和 同步的方法;
-
使用 after_fork 來恢復應用資訊;
-
使用 on_loop_start 來傳送一個 WORKER_UP,以此通知父程式;
-
使用 sys.exit(self.workloop(pid=pid)) 正式進入迴圈;
class Worker(object):
def __call__(self):
_exit = sys.exit
_exitcode = [None]
def exit(status=None):
_exitcode[0] = status
return _exit(status)
sys.exit = exit
pid = os.getpid()
self._make_child_methods()
self.after_fork()
self.on_loop_start(pid=pid) # callback on loop start
try:
sys.exit(self.workloop(pid=pid))
except Exception as exc:
error('Pool process %r error: %r', self, exc, exc_info=1)
self._do_exit(pid, _exitcode[0], exc)
finally:
self._do_exit(pid, _exitcode[0], None)
我們下面詳細分析。
3.4.1 配置 監聽 任務 和 同步的方法
子程式 使用 _make_child_methods 配置 監聽 任務 和 同步的方法;
def _make_child_methods(self, loads=pickle_loads):
self.wait_for_job = self._make_protected_receive(self.inq)
self.wait_for_syn = (self._make_protected_receive(self.synq)
if self.synq else None)
3.4.2 配置應用相關資訊
於是我們遇到一個問題:Celery 應用是在父程式中,子程式如何得到。
雖然在一些多程式機制中,父程式的變數是會複製到子程式中,但是這並不是一定的,所以必然有一個父程式把 Celery 應用 設定給子程式的機制。
所以,我們需要梳理父程式是如何給子程式配置 Celery應用,以及子程式如何得到這個應用的。
3.4.2.1 應用資訊來源
之前在父程式中,當啟動程式池時候, class Pool(object): 對應配置如下(路徑在 :billiard/pool.py):
需要注意的是:
- 這裡是回到父程式來探討;
- 引數 initializer 就是 Celery 變數本身。
程式碼為:
class Pool(object):
'''
Class which supports an async version of applying functions to arguments.
'''
_wrap_exception = True
Worker = Worker
Supervisor = Supervisor
TaskHandler = TaskHandler
TimeoutHandler = TimeoutHandler
ResultHandler = ResultHandler
SoftTimeLimitExceeded = SoftTimeLimitExceeded
def __init__(self, processes=None, initializer=None, initargs=(),
......
**kwargs):
self._ctx = context or get_context()
self.synack = synack
self._setup_queues()
self._taskqueue = Queue()
self._cache = {}
self._state = RUN
self.timeout = timeout
self.soft_timeout = soft_timeout
self._maxtasksperchild = maxtasksperchild
self._max_memory_per_child = max_memory_per_child
self._initializer = initializer
self._initargs = initargs
於是 Pool 類的相關變數為如下,這裡的 Celery myTest 就是 Celery 應用本身:
self._initializer = {function} <function process_initializer at 0x7f90c9387488>
self._initargs = {tuple: 2} (<Celery myTest at 0x7f90c8812f98>, 'celery')
self = {AsynPool} <celery.concurrency.asynpool.AsynPool object at 0x7f90c97379b0>
從而父程式中 class Worker(object): 配置如下,可以看到設定了 initializer:
class Worker(object):
def __init__(self, inq, outq, synq=None, initializer=None, initargs=(),
maxtasks=None, sentinel=None, on_exit=None,
sigprotection=True, wrap_exception=True,
max_memory_per_child=None, on_ready_counter=None):
assert maxtasks is None or (type(maxtasks) == int and maxtasks > 0)
self.initializer = initializer
self.initargs = initargs
3.4.2.2 呼叫恢復
前面提到,在子程式啟動之後,會呼叫 after_fork 來進行恢復應用。
process_initializer, prefork.py:44
after_fork, pool.py:421
__call__, pool.py:289
run, process.py:114
_bootstrap, process.py:327
_main, spawn.py:210
spawn_main, spawn.py:165
<frame not available>
具體看看,發現 after_fork 通過 self.initializer(*self.initargs) 恢復應用資訊。
def after_fork(self):
if hasattr(self.inq, '_writer'):
self.inq._writer.close()
if hasattr(self.outq, '_reader'):
self.outq._reader.close()
if self.initializer is not None:
self.initializer(*self.initargs)
# Make sure all exiting signals call finally: blocks.
# This is important for the semaphore to be released.
reset_signals(full=self.sigprotection)
# install signal handler for soft timeouts.
if SIG_SOFT_TIMEOUT is not None:
signal.signal(SIG_SOFT_TIMEOUT, soft_timeout_sighandler)
try:
signal.signal(signal.SIGINT, signal.SIG_IGN)
except AttributeError:
pass
3.4.2.3 恢復應用資訊
具體恢復方法在 process_initializer。
程式碼位置為 :celery/concurrency/prefork.py
這裡重要的是 app.set_current()
,就是把 傳入的 Celery 配置到 子程式本身之中。
具體程式碼為:
def process_initializer(app, hostname):
"""Pool child process initializer.
Initialize the child pool process to ensure the correct
app instance is used and things like logging works.
"""
_set_task_join_will_block(True)
platforms.signals.reset(*WORKER_SIGRESET)
platforms.signals.ignore(*WORKER_SIGIGNORE)
platforms.set_mp_process_title('celeryd', hostname=hostname)
# This is for Windows and other platforms not supporting
# fork(). Note that init_worker makes sure it's only
# run once per process.
app.loader.init_worker()
app.loader.init_worker_process()
if os.environ.get('FORKED_BY_MULTIPROCESSING'):
# pool did execv after fork
trace.setup_worker_optimizations(app, hostname)
else:
app.set_current() # 這裡進行配置
set_default_app(app)
app.finalize()
trace._tasks = app._tasks # enables fast_trace_task optimization.
# rebuild execution handler for all tasks.
from celery.app.trace import build_tracer
for name, task in app.tasks.items():
task.__trace__ = build_tracer(name, task, app.loader, hostname,
app=app)
from celery.worker import state as worker_state
worker_state.reset_state()
signals.worker_process_init.send(sender=None)
配置 Celery 自己
子程式中,具體配置程式碼位於:celery/app/base.py,我們可以看到 TLS 相關資訊。
def set_current(self):
"""Make this the current app for this thread."""
_set_current_app(self)
def _set_current_app(app):
_tls.current_app = app
def _get_current_app():
if default_app is None:
#: creates the global fallback app instance.
from celery.app.base import Celery
set_default_app(Celery(
'default', fixups=[], set_as_current=False,
loader=os.environ.get('CELERY_LOADER') or 'default',
))
return _tls.current_app or default_app
TLS
TLS 定義位於:celery/_state.py
就是各個程式或者執行緒獨立的變數,區別取決於不同實現方式。
class _TLS(threading.local):
#: Apps with the :attr:`~celery.app.base.BaseApp.set_as_current` attribute
#: sets this, so it will always contain the last instantiated app,
#: and is the default app returned by :func:`app_or_default`.
current_app = None
_tls = _TLS()
後續使用
這樣後續的使用就可以使用 get_current_app
提出來 Celery 本身,獲取應用資訊。
具體後續是在 celery/_state.py 做了進一步封裝,並且使用,如何使用,我們下文講解。
if os.environ.get('C_STRICT_APP'): # pragma: no cover
def get_current_app():
"""Return the current app."""
raise RuntimeError('USES CURRENT APP')
elif os.environ.get('C_WARN_APP'): # pragma: no cover
def get_current_app(): # noqa
import traceback
print('-- USES CURRENT_APP', file=sys.stderr) # noqa+
traceback.print_stack(file=sys.stderr)
return _get_current_app()
3.4.3 通知父程式
子程式啟動最後,會使用 on_loop_start 來傳送一個 WORKER_UP,可以看到是通過管道進行互動。
於是在父程式 ResultHandler . on_process_alive 會響應。
class Worker(_pool.Worker):
"""Pool worker process."""
def on_loop_start(self, pid):
# our version sends a WORKER_UP message when the process is ready
# to accept work, this will tell the parent that the inqueue fd
# is writable.
self.outq.put((WORKER_UP, (pid,)))
父程式啟動時候,會設定一個訊息響應 函式,這樣父程式就知道子程式已經ready,可以給子程式安排工作。
class ResultHandler(_pool.ResultHandler):
"""Handles messages from the pool processes."""
def __init__(self, *args, **kwargs):
self.fileno_to_outq = kwargs.pop('fileno_to_outq')
self.on_process_alive = kwargs.pop('on_process_alive')
super().__init__(*args, **kwargs)
# add our custom message handler
self.state_handlers[WORKER_UP] = self.on_process_alive
3.4.4 正式進入業務邏輯
子程式使用 sys.exit(self.workloop(pid=pid)) 正式進入迴圈;
程式碼位置:billiard/pool.py
可以看到,使用 req = wait_for_job() 來監聽任務資訊,然後執行。
具體堆疊為:
workloop, pool.py:351
__call__, pool.py:292
run, process.py:114
_bootstrap, process.py:327
_main, spawn.py:210
spawn_main, spawn.py:165
<frame not available>
具體程式碼邏輯如下:
def workloop(self, debug=debug, now=monotonic, pid=None):
pid = pid or os.getpid()
put = self.outq.put
inqW_fd = self.inqW_fd
synqW_fd = self.synqW_fd
maxtasks = self.maxtasks
max_memory_per_child = self.max_memory_per_child or 0
prepare_result = self.prepare_result
wait_for_job = self.wait_for_job
_wait_for_syn = self.wait_for_syn
def wait_for_syn(jid):
i = 0
while 1:
if i > 60:
error('!!!WAIT FOR ACK TIMEOUT: job:%r fd:%r!!!',
jid, self.synq._reader.fileno(), exc_info=1)
req = _wait_for_syn()
if req:
type_, args = req
if type_ == NACK:
return False
assert type_ == ACK
return True
i += 1
completed = 0
try:
while maxtasks is None or (maxtasks and completed < maxtasks):
req = wait_for_job()
if req:
type_, args_ = req
assert type_ == TASK
job, i, fun, args, kwargs = args_
put((ACK, (job, i, now(), pid, synqW_fd)))
if _wait_for_syn:
confirm = wait_for_syn(job)
if not confirm:
continue # received NACK
try:
result = (True, prepare_result(fun(*args, **kwargs)))
except Exception:
result = (False, ExceptionInfo())
try:
put((READY, (job, i, result, inqW_fd)))
except Exception as exc:
_, _, tb = sys.exc_info()
try:
wrapped = MaybeEncodingError(exc, result[1])
einfo = ExceptionInfo((
MaybeEncodingError, wrapped, tb,
))
put((READY, (job, i, (False, einfo), inqW_fd)))
finally:
del(tb)
completed += 1
if max_memory_per_child > 0:
used_kb = mem_rss()
if used_kb <= 0:
error('worker unable to determine memory usage')
if used_kb > 0 and used_kb > max_memory_per_child:
warning(MAXMEM_USED_FMT.format(
used_kb, max_memory_per_child))
return EX_RECYCLE
if maxtasks:
return EX_RECYCLE if completed == maxtasks else EX_FAILURE
return EX_OK
finally:
# Before exiting the worker, we want to ensure that that all
# messages produced by the worker have been consumed by the main
# process. This prevents the worker being terminated prematurely
# and messages being lost.
self._ensure_messages_consumed(completed=completed)
邏輯如下:
+
parent process | child process
+-----------------------------+ |
| SpawnProcess | | +-----------+
| | | | Celery |
| os.getpid()+-----------------+ | | |
| | | | +-----------+
| rhandle +---------------+ | | +---------------+
| Popen | | | | | spawn_main | ^
| + whandle | | | | parent_pid | | 4 +-------------+ |
| | | | | | | self+--------> |SpawnProcess | |
+---+-------------------------+ | | | +---------------> | | +------+------+ |
| | | | | | | fd | | |
| | | | | | +-----------> | ^ | | |
| | get_command_line | | | | | pipe_handle | | | 5 | _bootstrap() |
| | | | | | | +---------------+ | |
| | | | | | | | v +---------+
| v | | | | | ^ | |
| v v | | | | | +---------------------------+
python -c 'from billi|rd.spawn import spawn_main; spawn_main(....)' --billiard-fork ... | | | | | | Worker | |
| + + + | | | | | | | | <---------+
| | | | | | | | | | + | |
| | | | | | | | | | _tls.current_app | |
| | | | | | | | | | | |
| | CreateProcess | | | | | | | +------------+--------------+ |
| | | +---------------------------------+ | | | | |
| | +---------------------------------------+ | | | |
| | | | | |
| | 1 +-----------------+ 2 | | | |
| +----------------------------------------------> | windows kernel | +---------------------+ | | |
| +-----------------+ | | |
| | | |
| | | |
+-----------------------------------------------------------------------------------------------------------+ | |
3 reduction.dump(process_obj, to_child) | 6 __call__ |
+ | |
| +------------------------->+
|
|
+
手機如下:
至此,子程式啟動完畢,具體如何執行父程式傳來的任務,我們下期進行介紹。