Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
非常經典的動態規劃題
看到題目有點像樹的結構,可以考慮用深搜(DFS)去做,但每個結點總是共享一個子節點,有重疊子問題
如果從x和y到達最底部結點的最短路徑知道,則在選擇x和y結點時一定會選擇min(pathx ,pathy)最小的結點走,具有最優子結構特性
故可以考慮利用動態規劃解決(DP)
設決策變數為path[i][j],表示第i層的第j個結點到最底層的最短路徑
則path[i][j] = min(path[i+1][j],path[i+1][j+1]) + triangle[i][j] ,可以考慮滾動陣列的做法,由於底層的資料不會用到
利用新計算的值覆蓋原有的值,故只需要考慮一維陣列
path[j] = min(path[j] , path[j+1]) + triangle[i][j]; (j代表每層的第幾個結點)
注意計算時要從前往後計算,不然會改變原有的值,做完這題可以看一下從後往前計算的題Pascal's Triangle II
int minimumTotal(vector<vector<int> > &triangle) { int n = triangle.size(); vector<int> path(triangle[n-1].begin(),triangle[n-1].end()); for(int i = n-2; i>= 0; -- i){ for(int j = 0 ; j < triangle[i].size(); ++ j){ path[j] = min(path[j],path[j+1]) + triangle[i][j]; } } return path[0]; }