為什麼資料庫調整大小如此困難?
為什麼規劃資料庫容量如此困難?那麼怎麼簡化?可以使用開源NoSQL資料庫ScyllaDB來演示示例。
調整資料庫的大小看起來很簡單:用資料集的大小和所需吞吐量除以節點的容量。很容易,不是嗎?
如果有人曾經嘗試規劃資料庫容量,就會知道這有多難。即使是做出粗略的估計也很具挑戰性。那麼為什麼這麼難?
以下是估算叢集大小的步驟:
(1)對使用模式做出假設。
(2)估計所需工作量。
(3)決定資料庫的高階配置。
(4)將工作負載、配置和使用模式提供給資料庫的效能模型。
(5)收入。
這個流程雖然容易理解,但在實踐工作中卻不那麼容易。
例如,在對資料庫配置(例如複製因子和一致性級別)做出決策時,做出的決策會受到預先設想答案的影響。而當成本變得非常昂貴時,而進行一些複製似乎有點過分。
將資料庫的規模調整看作一個設計過程,需要意識它是迭代的,並且支援需求和使用的發現和研究。與任何設計過程一樣,最佳規模在經濟上和操作上都不理想,其投入的時間和資源也很有限。
在設計過程的簡單性和成本與準確性之間存在內在的權衡。畢竟,複雜的模型可以更好地預測資料庫效能,但其成本可能與構建資料庫本身一樣高,而且需要太多的輸入,以至於其應用不切實際。
帶來哪些問題?
資料庫的工作負載通常被描述為查詢的吞吐量和它必須支援的資料集大小。這將會引發出一些問題:
•這個數字是最大吞吐量還是平均值?(工作量通常有周期性變化和峰值)
•是否應該分離某些型別的查詢?(例如讀取和寫入)
•如果還沒有使用這個資料庫,那麼如何估計查詢的數量?資料集多大?
•熱門資料集是什麼?資料庫儲存的資料比它們在任何給定時間點所能提供的資料多得多。
•資料模型呢?從經驗中知道,資料模型對查詢數量、效能和儲存大小有很大的影響。
•預期增長是多少?希望構建一個可以隨工作負載擴充套件的資料庫。
•查詢的服務等級目標(SLO)是什麼?設計的延遲目標是什麼?
有些人很幸運,擁有一個可以正常工作的系統,也許還有執行正常的資料庫,他們可以很容易地從中提取或推斷出這些問題的答案。但在通常情況下,一些被迫使用猜測方法和粗略計算。這並不像聽起來那麼糟糕。例如,可以瞭解這個使用蒙特卡羅工具的模型,如下圖所示。
估計工作量很有趣。但是出於簡單的分級目的,人們感興趣的是吞吐量和資料集的最大值,並將只區分兩種查詢:讀取和寫入,其原因將在後面解釋。
還可以假設對資料模型的控制程度很高。對於任何NoSQL資料庫,其目標是通過一個查詢來處理所有需要的資料--如果使用者想優化讀取或寫入,需要做出決定。
通常的基本步驟是:
(1)估計峰值資料集大小和工作負載。
(2)初步繪製資料模型,對優化目標進行高層決策。
(3)根據資料模型估計讀/寫比率。
構建資料庫的效能模型
資料庫的效能模型必須在一些有時相互衝突的需求之間取得平衡,它必須考慮足夠的效能和容量安全裕度,但需要在成本、可靠性與效能、持續和峰值負載之間實現平衡,但仍然可以簡化,即使在沒有特定應用程式的情況下使用,同時提供明確的結果。
這確實是一項具有挑戰性的任務。但它可以簡單得多。例如,以下是它如何與Scylla一起工作,Scylla是一個相容Apache Cassandra的開源NoSQL資料庫。
查詢vs操作
工作負載是根據查詢(通常是CQL)指定的。CQL查詢可能非常複雜,並生成數量不一的基本操作,這些操作的效能相對可預測。以下面的CQL查詢為例:
1.SELECT * FROM user_stats WHERE id=UUID
2.SELECT * FROM user_stats WHERE username=USERNAME
3.SELECT * FROM user_stats WHERE city=”New York” ALLOW FILTERING
查詢#1將使用主鍵定位記錄,因此會立即在正確的分割槽上執行--根據一致性級別,它仍然可能分解為幾個操作,因為將查詢多個副本(稍後詳細介紹)。
儘管查詢#2看起來非常相似,但它會基於二級索引查詢記錄,分解為兩個子查詢:一個子查詢到全域性二級索引以查詢主鍵,另一個子查詢從分割槽檢索行。此外,根據一致性級別,這可能會生成多個操作。
查詢#3甚至更極端,因為它跨分割槽掃描;它的表現將是糟糕的和不可預測的。
另一個例子是UPDATE查詢:
1.UPDATE user_stats SET username=USERNAME, rank=231, score=3432 WHERE ID=UUID
2.UPDATE user_stats SET username=USERNAME, rand=231, score=3432 WHERE ID=UUID IF EXISTS
查詢#1可能會直觀地分解為讀取和寫入這兩個操作--但在CQL UPDATE查詢中是UPSERT查詢,只會生成1個寫入操作。
然而,查詢#2儘管看起來很相似,但它不僅要求在所有副本上先讀取後寫入,而且還要求進行編排的輕量級事務(LWT)。
類似地,查詢生成的磁碟運算元量可能會有很大的不同。大多數資料庫在排序字串表(SSTable)儲存格式中使用日誌結構的合併樹(LSM)結構。他們從不修改磁碟上的SSTable檔案,它們是不變的。寫入被持久化到只追加提交日誌以進行恢復,並寫入記憶體緩衝區(memtable)。當memtable變得太大時,它會被寫入磁碟上的一個新的SSTable檔案,並從記憶體中重新整理。這使得寫路徑非常高效,但在讀取時引入了一個問題:資料庫必須在多個SSTables中搜尋一個值。
為了防止這種讀取失控放大,資料庫定期將多個SSTables壓縮到數量更少的檔案中,只保留最新的資料。這減少了完成查詢所需的讀取運算元量。
這意味著將磁碟操作歸因於單個查詢實際上是不可能的。磁碟操作的確切數量取決於SSTables的數量、它們的排列、壓縮策略等。開源的NoSQL資料庫旨在最大限度地利用儲存空間,所以只要磁碟速度足夠快並且不是瓶頸,就可以忽略這個維度。這就是推薦快速本地NVMe磁碟的原因。
雖然這個示例主要關注CQL,但預測查詢成本並不是唯一的問題。事實上,查詢語言越豐富、功能越強大,就越難以預測其效能。例如,由於SQL的強大功能,它的效能可能難以預測。因此,複雜的查詢優化器是RDBMS的重要組成部分,它確實提高了效能,但其代價是使效能更加難以預測。這是NoSQL採取的另一種折衷方法:優先考慮可預測的效能和可擴充套件性,而不是功能豐富的查詢語言。
一致性的難題
分散式可用資料庫需要可靠地將資料複製到多個節點。每個鍵空間可以配置副本的數量,稱之為複製因子。從客戶端的角度來看,這可以同步發生,也可以非同步發生,這取決於寫入的一致性級別。
例如,當一致性級別為1時,資料最終會寫入所有副本,但客戶端只會等待一個副本確認寫入。即使有些節點暫時不可用,資料庫也應該在這些節點可用時快取寫入和複製(這稱為暗示切換)。在實踐中,可以假設每個寫查詢都會在每個副本上生成至少一個寫入操作。
然而,對於讀取來說,情況有些不同。一致性級別為ALL的查詢必須從所有副本讀取資料,從而生成與叢集的複製因子一樣多的讀取操作,但一致性級別為1的查詢只從單個節點讀取資料,從而實現更便宜、更快的讀取。這允許使用者以犧牲一致性為代價從叢集中擠出更多的讀吞吐量,因為一個節點在被讀取時可能還沒有獲得最近的更新。
最後,還有輕量級事務(LWT)需要考慮。如上所述,輕量級事務(LWT)需要利用Paxos演算法對所有副本進行編排。輕量級事務(LWT)不僅強制每個副本讀取然後寫入該值,而且還需要維護事務的狀態,直到Paxos輪結束。由於輕量級事務(LWT)的行為方式不同,需要將其視為每個核心能夠支援的吞吐量的獨立效能模型。
所有操作都是平等的,但有些操作比其他操作更平等
現在已經將CQL查詢分解為基本操作,那麼可以詢問一些問題:每個操作需要多少時間(和資源)?CPU核心能支援的容量是多少?同樣,其答案有點複雜。作為一個例子,可以考慮一個簡單的讀取並遵循節點中的執行步驟:
(1)在記憶體表中查詢值。
(2)在快取中查詢值。
(3)在SSTables中逐層查詢值併合並值。
(4)響應協調者。
顯然,如果它們在基於記憶體的memtable或行級快取中,讀取將更快地完成,這沒什麼好奇怪的。此外,步驟#3和#4可能會產生更高的成本,這取決於從磁碟讀取、處理和通過網路傳輸的資料的大小。如果需要讀取10MB的資料,這可能需要相當長的時間。這可能是因為儲存在單個單元格中的值很大,也可能是因為範圍掃描返回許多結果。但是,在值很大的情況下,Scylla不能將它們分成更小的塊,必須將整個單元格載入到記憶體中。
一般來說,建議對資料進行建模,使分割槽、行和單元不要增長得太大,以確保減少效能的差異。然而在現實中,總會有一些差異。
當涉及到分割槽訪問模式時,這種差異尤其顯著。許多資料庫用於跨節點擴充套件和傳播資料的策略是將資料分塊到彼此獨立的分割槽中。但獨立也意味著分割槽可能會經歷不均勻的負載,導致所謂的“熱分割槽”問題,即單個分割槽會遇到節點容量限制,儘管叢集的其餘部分有足夠的資源。這個問題的發生在很大程度上取決於資料模型、資料集中分割槽鍵的分佈以及工作負載中鍵的分佈。由於預測熱分割槽通常需要分析整個資料集和工作負載,因此在設計階段是不切實際的,因此可以提供某些已知的分佈作為模型的輸入,或者對分割槽的相對熱進行一些假設。另外,nodetool toppartitions命令可以幫助定位熱分割槽。
物化檢視、二級索引和其他
資料庫具有自動二級索引和物化檢視以及變更資料捕獲(CDC)功能。這些表本質上是由資料庫本身維護的輔助表,只允許使用一個寫操作以多種形式寫入資料。
而在幕後,Scylla根據使用者提供的模式派生要寫入的新值,並將這些新值寫入不同的表。在這方面,Scylla和RDBMS之間的主要區別在於,派生資料是非同步寫入的,並且作為索引和物化檢視跨網路寫入,而不侷限於單個分割槽。這是另一個需要考慮的寫入的來源。在Scylla中,它是可以預測的,並且在效能上與使用者生成的操作相似。對於寫入的每一項,CDC和從寫入單元格派生的每個物化檢視或二級索引都將觸發一次寫入。在某些情況下,物化檢視和CDC可能需要額外的讀取,例如,如果啟用了CDC的“預映像”功能,就會發生這種情況。另外需要記住的是,一個CQL查詢可以觸發多個寫操作。
CDC、二級索引和物化檢視被實現為由Scylla本身管理的常規表,但這也意味著它們消耗的磁碟空間與使用者表相當,因此必須在容量計劃中考慮到這一點。
高峰和資料庫維護
所有資料庫都需要執行各種維護操作。RDBMS需要清理重做日誌(例如Postgre SQL VACUUM),轉儲快照到磁碟(檢視Redis),或執行記憶體垃圾收集(Cassandra、Elastic、HBase)。使用LSM儲存的資料庫(如Cassandra、HBase、Scylla)也需要定期壓縮SSTables,並將memtable重新整理到新的SSTables中。
如果資料庫足夠智慧,可以將壓縮和修復等維護操作推遲到稍後、負載更少的時間,那麼可以在短時間內獲得最佳效能。然而,最終將不得不為這些維護操作預留資源。這對於大多數系統來說非常有用,因為一天內的負載的分配並不是均勻的。但是,企業的計劃應該為資料庫的持續長期操作提供足夠的容量。
此外,僅根據吞吐量進行規劃是不夠的。在某種程度上,可以使資料庫過載以獲得更高的吞吐量,但其代價是更高的延遲。
在這個意義上,基準往往具有誤導性,通常時間太短而無法達到有意義的持續執行。延遲/吞吐量的權衡通常更容易度量,甚至在較短的基準測試中也可以觀察到。
另一個重要但經常被忽視的問題是降級操作。作為一個本地冗餘和高可用的資料庫,Scylla被設計為平滑地處理節點故障(根據使用者設定的一致性約束)。但是,雖然故障在語義上是一致的,但這並不意味著它們是動態透明的,而其容量的顯著損失將影響叢集的效能,以及故障節點的恢復或替換。在調整叢集規模時也需要考慮這些因素。
選擇適當規模的節點
由於Scylla的容量可以通過增加節點或選擇更大的節點來增加,一個有趣的問題出現了:應該選擇哪種擴充套件策略?一方面,更大的節點效率更高,因為可以獨立於服務Scylla的核心分配CPU核來處理網路和其他任務,並減少節點協調的相對開銷。另一方面,擁有的節點越多,當其中一個節點出現故障時,損失的部分容量就越少--儘管丟失節點的概率稍微高一些。
對於非常大的工作負載,解決這個問題是沒有意義的,因為大型節點是不夠的。但是對於許多較小的工作負載來說,3箇中大型節點就足夠了。這個決定與工作量相關。但是,對於可靠性降級操作,建議至少執行6~9個節點(假設複製因子為3)。
結論
容量規劃和調整叢集規模可能非常複雜和具有挑戰性。本文已經討論瞭如何考慮安全裕度、維護操作和使用模式。重要的是要記住,任何猜測都只是迭代的初始估計。一旦投入生產並有了真實的資料,可以讓它指導實施容量計劃。
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/28285180/viewspace-2838463/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- 為什麼Kubernetes的儲存如此艱難?
- 為什麼實施物聯網安全非常困難
- win10畫板調整大小為A4怎麼設定_win10畫板如何調整大小Win10
- launchpad圖示大小怎麼調整?mac圖示調整大小方法介紹Mac
- 【Go】四捨五入在go語言中為何如此困難Go
- 為什麼量子計算如此難以解釋? - quantamagazine
- 女生轉行學IT有什麼困難?
- 遊戲的留存為什麼那麼難調?遊戲
- 為什麼說資料庫是Serverless最難攻堅的堡壘?資料庫Server
- 如何調整Pycharm字型大小PyCharm
- Oracle - 資料庫的記憶體調整Oracle資料庫記憶體
- 達夢資料庫引數調整方法資料庫
- 如何調整畫布內容並獲得調整大小(壓縮)的影像Base64資料?
- 資料庫倉庫系列:(一)什麼是資料倉儲,為什麼要資料倉儲資料庫
- 大資料分析存在哪些困難大資料
- PG資料庫為什麼要用autovacuum資料庫
- Linux系統調整swap大小Linux
- wps批量調整圖片大小
- Python 為什麼如此設計?Python
- 豐田精益生產方式為什麼如此強調現場?
- win10磁貼資料夾圖示太小怎麼調_win10調整磁貼大小方法Win10
- 資料庫DBA為什麼拒絕DevOps?資料庫dev
- win10如何調整開始欄大小_win10開始欄怎麼調整Win10
- 如何獲取 PostgreSQL 資料庫中的表大小、資料庫大小、索引大小、模式大小、表空間大小、列大小SQL資料庫索引模式
- 部署機器學習非常困難,並將一直如此...機器學習
- 宮崎英高解釋FromSoftware遊戲如此困難的原因遊戲
- 如何調整Docker裡面的Image 大小?Docker
- JavaScript滑鼠拖動調整div大小JavaScript
- Python 調整PDF頁面尺寸大小Python
- ORACLE RAC+DG調整redo大小Oracle
- 為什麼DBA需要資料庫廠商的資料庫概念文件資料庫
- 為什麼Web3如此重要?Web
- 為什麼 Dapr 如此令人興奮
- 為什麼NoSQL資料庫這麼受歡迎?SQL資料庫
- 手動上傳圖片,怎麼調整大小和居中
- 為什麼要對資料庫最佳化資料庫
- 為什麼不用資料庫儲存圖片?資料庫
- 為什麼要選擇分散式資料庫?分散式資料庫