Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = target? Find all unique quadruplets in the array which gives the sum of target.
Note:
- Elements in a quadruplet (a,b,c,d) must be in non-descending order. (ie, a ≤ b ≤ c ≤ d)
- The solution set must not contain duplicate quadruplets.
For example, given array S = {1 0 -1 0 -2 2}, and target = 0. A solution set is: (-1, 0, 0, 1) (-2, -1, 1, 2) (-2, 0, 0, 2)
與3sum一樣
class Solution { public: vector<vector<int> > fourSum(vector<int> &num, int target) { vector<vector<int> > res; int n = num.size(); if( n < 4) return res; sort(num.begin(),num.end()); for(int i = 0; i < n-3; ++ i){ if(i !=0 && num[i]== num[i-1]) continue; for(int j = i+1; j < n-2; ++ j){ if(j!=i+1 && num[j] == num[j-1] ) continue; int start = j+1, end = n-1; while(start < end){ int sum = num[i]+num[j]+num[start]+num[end]; if(sum > target) end--; else if(sum < target) start++; else{ vector<int> a; a.push_back(num[i]);a.push_back(num[j]); a.push_back(num[start]);a.push_back(num[end]); res.push_back(a); do{start++;}while(start < end && num[start] == num[start-1]); do{end--;}while(start < end && num[end] == num[end+1]); } } } } return res; } };