一. 前言
其實早前就想計劃出這篇文章,但是最近主要精力在完善微服務、系統許可權設計、微信小程式和管理前端的功能,不過好在有群裡小夥伴的一起幫忙反饋問題,基礎版的功能已經差不多,也在此謝過,希望今後大家還是能夠相互學習,一起進步~
ELK是Elasticsearch、Logstash、Kibana三個開源軟體的組合,相信很多童鞋使用ELK有去做過分散式日誌收集。流程概括為:微服務應用把Logback輸出的日誌通過HTTP傳輸至LogStash,然後經過分析過濾,轉發至ES,再由Kibana提供檢索和統計視覺化介面。
在本實戰案例中,使用Spring AOP、Logback橫切認證介面來記錄使用者登入日誌,收集到ELK,通過SpringBoot整合RestHighLevelClient實現對ElasticSearch資料檢索和統計。從日誌蒐集到資料統計,一次性的走個完整,快速入門ElasticSearch。
本篇涉及的前後端全部原始碼已上傳gitee和github,熟悉有來專案的童鞋快速過一下步驟即可。
專案名稱 | Github | 碼雲 |
---|---|---|
後臺 | youlai-mall | youlai-mall |
前端 | youlai-mall-admin | youlai-mall-admin |
歡迎大家加入開源專案交流群,一起參與開源專案的開發
二. 需求
基於ELK的日誌蒐集的功能,本篇實現的需求如下:
- 記錄系統使用者登入日誌,資訊包括使用者IP、登入耗時、認證令牌JWT
- 統計十天內使用者登入次數、今日訪問IP和總訪問IP
- 充分利用記錄的JWT資訊,通過黑名單的方式讓JWT失效實現強制下線
實現效果:
- Kibana日誌視覺化統計
- 登入次數統計、今日訪問IP統計、總訪問IP統計
- 登入資訊,強制使用者下線,演示的是自己強制自己下線的效果
三. Docker快速搭建ELK環境
1. 拉取映象
docker pull elasticsearch:7.10.1
docker pull kibana:7.10.1
docker pull logstash:7.10.1
2. elasticsearch部署
1. 環境準備
# 建立檔案
mkdir -p /opt/elasticsearch/{plugins,data} /etc/elasticsearch
touch /etc/elasticsearch/elasticsearch.yml
chmod -R 777 /opt/elasticsearch/data/
vim /etc/elasticsearch/elasticsearch.yml
# 寫入
cluster.name: elasticsearch
http.cors.enabled: true
http.cors.allow-origin: "*"
http.host: 0.0.0.0
node.max_local_storage_nodes: 100
2. 啟動容器
docker run -d --name=elasticsearch --restart=always \
-e discovery.type=single-node \
-e ES_JAVA_OPTS="-Xms256m -Xmx256m" \
-p 9200:9200 \
-p 9300:9300 \
-v /etc/elasticsearch/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /opt/elasticsearch/data:/usr/share/elasticsearch/data \
-v /opt/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
elasticsearch:7.10.1
3. 驗證和檢視ElasticSearch版本
curl -XGET localhost:9200
2. kibana部署
1. 環境準備
# 建立檔案
mkdir -p /etc/kibana
vim /etc/kibana/kibana.yml
# 寫入
server.name: kibana
server.host: "0"
elasticsearch.hosts: [ "http://elasticsearch:9200" ]
i18n.locale: "zh-CN"
2. 啟動容器
docker run -d --restart always -p 5601:5601 --link elasticsearch \
-e ELASTICSEARCH_URL=http://elasticsearch:9200 \
-v /etc/kibana/kibana.yml:/usr/share/kibana/config/kibana.yml \
kibana:7.10.1
3. logstash部署
1. 環境準備
- 配置
logstash.yml
# 建立檔案
mkdir -p /etc/logstash/config
vim /etc/logstash/config/logstash.yml
# 寫入
http.host: "0.0.0.0"
xpack.monitoring.elasticsearch.hosts: [ "http://elasticsearch:9200" ]
xpack.management.pipeline.id: ["main"]
- 配置
pipeline.yml
# 建立檔案
vim /etc/logstash/config/pipeline.yml
# 寫入(注意空格)
- pipeline.id: main
path.config: "/usr/share/logstash/pipeline/logstash.config"
- 配置
logstash.conf
# 建立檔案
mkdir -p /etc/logstash/pipeline
vim /etc/logstash/pipeline/logstash.conf
# 寫入
input {
tcp {
port => 5044
mode => "server"
host => "0.0.0.0"
codec => json_lines
}
}
filter{
}
output {
elasticsearch {
hosts => ["elasticsearch:9200"]
# 索引名稱,沒有會自動建立
index => "%{[project]}-%{[action]}-%{+YYYY-MM-dd}"
}
}
2. 啟動容器
docker run -d --restart always -p 5044:5044 -p 9600:9600 --name logstash --link elasticsearch \
-v /etc/logstash/config/logstash.yml:/usr/share/logstash/config/logstash.yml \
-v /etc/logstash/config/pipeline.yml:/usr/share/logstash/config/pipeline.yml \
-v /etc/logstash/pipeline/logstash.conf:/usr/share/logstash/pipeline/logstash.conf \
logstash:7.10.1
4. 測試
四. Spring AOP + Logback 橫切列印登入日誌
1. Spring AOP橫切認證介面新增日誌
程式碼座標: common-web#LoginLogAspect
@Aspect
@Component
@AllArgsConstructor
@Slf4j
@ConditionalOnProperty(value = "spring.application.name", havingValue = "youlai-auth")
public class LoginLogAspect {
@Pointcut("execution(public * com.youlai.auth.controller.AuthController.postAccessToken(..))")
public void Log() {
}
@Around("Log()")
public Object doAround(ProceedingJoinPoint joinPoint) throws Throwable {
LocalDateTime startTime = LocalDateTime.now();
Object result = joinPoint.proceed();
// 獲取請求資訊
ServletRequestAttributes attributes = (ServletRequestAttributes) RequestContextHolder.getRequestAttributes();
HttpServletRequest request = attributes.getRequest();
// 重新整理token不記錄
String grantType=request.getParameter(AuthConstants.GRANT_TYPE_KEY);
if(grantType.equals(AuthConstants.REFRESH_TOKEN)){
return result;
}
// 時間統計
LocalDateTime endTime = LocalDateTime.now();
long elapsedTime = Duration.between(startTime, endTime).toMillis(); // 請求耗時(毫秒)
// 獲取介面描述資訊
MethodSignature signature = (MethodSignature) joinPoint.getSignature();
String description = signature.getMethod().getAnnotation(ApiOperation.class).value();// 方法描述
String username = request.getParameter(AuthConstants.USER_NAME_KEY); // 登入使用者名稱
String date = startTime.format(DateTimeFormatter.ofPattern("yyyy-MM-dd")); // 索引名需要,因為預設生成索引的date時區不一致
// 獲取token
String token = Strings.EMPTY;
if (request != null) {
JSONObject jsonObject = JSONUtil.parseObj(result);
token = jsonObject.getStr("value");
}
String clientIP = IPUtils.getIpAddr(request); // 客戶端請求IP(注意:如果使用Nginx代理需配置)
String region = IPUtils.getCityInfo(clientIP); // IP對應的城市資訊
// MDC 擴充套件logback欄位,具體請看logback-spring.xml的自定義日誌輸出格式
MDC.put("elapsedTime", StrUtil.toString(elapsedTime));
MDC.put("description", description);
MDC.put("region", region);
MDC.put("username", username);
MDC.put("date", date);
MDC.put("token", token);
MDC.put("clientIP", clientIP);
log.info("{} 登入,耗費時間 {} 毫秒", username, elapsedTime); // 收集日誌這裡必須列印一條日誌,內容隨便吧,記錄在message欄位,具體看logback-spring.xml檔案
return result;
}
}
2. Logback日誌上傳至LogStash
程式碼座標:common-web#logback-spring.xml
<!-- Logstash收集登入日誌輸出到ElasticSearch -->
<appender name="LOGIN_LOGSTASH" class="net.logstash.logback.appender.LogstashTcpSocketAppender">
<destination>localhost:5044</destination>
<encoder charset="UTF-8" class="net.logstash.logback.encoder.LoggingEventCompositeJsonEncoder">
<providers>
<timestamp>
<timeZone>Asia/Shanghai</timeZone>
</timestamp>
<!--自定義日誌輸出格式-->
<pattern>
<pattern>
{
"project": "${APP_NAME}",
"date": "%X{date}", <!-- 索引名時區同步 -->
"action":"login",
"pid": "${PID:-}",
"thread": "%thread",
"message": "%message",
"elapsedTime": "%X{elapsedTime}",
"username":"%X{username}",
"clientIP": "%X{clientIP}",
"region":"%X{region}",
"token":"%X{token}",
"loginTime": "%date{\"yyyy-MM-dd HH:mm:ss\"}",
"description":"%X{description}"
}
</pattern>
</pattern>
</providers>
</encoder>
<keepAliveDuration>5 minutes</keepAliveDuration>
</appender>
<!-- additivity="true" 預設是true 會向上傳遞至root -->
<logger name="com.youlai.common.web.aspect.LoginLogAspect" level="INFO" additivity="true">
<appender-ref ref="LOGIN_LOGSTASH"/>
</logger>
- localhost:5044 Logstash配置的input收集資料的監聽
- %X{username} 輸出MDC新增的username的值
五. SpringBoot整合ElasticSearch客戶端RestHighLevelClient
1. pom依賴
程式碼座標: common-elasticsearch#pom.xml
客戶端的版本需和伺服器的版本對應,這裡也就是7.10.1
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<exclusions>
<exclusion>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-client</artifactId>
</exclusion>
<exclusion>
<artifactId>elasticsearch</artifactId>
<groupId>org.elasticsearch</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>7.10.1</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-client</artifactId>
<version>7.10.1</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>
2. yml 配置
spring:
elasticsearch:
rest:
uris: ["http://localhost:9200"]
cluster-nodes:
- localhost:9200
3. RestHighLevelClientConfig 配置類
程式碼座標: common-elasticsearch#RestHighLevelClientConfig
@ConfigurationProperties(prefix = "spring.elasticsearch.rest")
@Configuration
@AllArgsConstructor
public class RestHighLevelClientConfig {
@Setter
private List<String> clusterNodes;
@Bean
public RestHighLevelClient restHighLevelClient() {
HttpHost[] hosts = clusterNodes.stream()
.map(this::buildHttpHost) // eg: new HttpHost("127.0.0.1", 9200, "http")
.toArray(HttpHost[]::new);
return new RestHighLevelClient(RestClient.builder(hosts));
}
private HttpHost buildHttpHost(String node) {
String[] nodeInfo = node.split(":");
return new HttpHost(nodeInfo[0].trim(), Integer.parseInt(nodeInfo[1].trim()), "http");
}
}
4. RestHighLevelClient API封裝
程式碼座標: common-elasticsearch#ElasticSearchService
- 暫只簡單封裝實現需求裡需要的幾個方法,計數、去重計數、日期聚合統計、列表查詢、分頁查詢、刪除,後續可擴充套件...
@Service
@AllArgsConstructor
public class ElasticSearchService {
private RestHighLevelClient client;
/**
* 計數
*/
@SneakyThrows
public long count(QueryBuilder queryBuilder, String... indices) {
// 構造請求
CountRequest countRequest = new CountRequest(indices);
countRequest.query(queryBuilder);
// 執行請求
CountResponse countResponse = client.count(countRequest, RequestOptions.DEFAULT);
long count = countResponse.getCount();
return count;
}
/**
* 去重計數
*/
@SneakyThrows
public long countDistinct(QueryBuilder queryBuilder, String field, String... indices) {
String distinctKey = "distinctKey"; // 自定義計數去重key,保證上下文一致
// 構造計數聚合 cardinality:集合中元素的個數
CardinalityAggregationBuilder aggregationBuilder = AggregationBuilders
.cardinality(distinctKey).field(field);
// 構造搜尋源
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(queryBuilder).aggregation(aggregationBuilder);
// 構造請求
SearchRequest searchRequest = new SearchRequest(indices);
searchRequest.source(searchSourceBuilder);
// 執行請求
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
ParsedCardinality result = searchResponse.getAggregations().get(distinctKey);
return result.getValue();
}
/**
* 日期聚合統計
*
* @param queryBuilder 查詢條件
* @param field 聚合欄位,如:登入日誌的 date 欄位
* @param interval 統計時間間隔,如:1天、1周
* @param indices 索引名稱
* @return
*/
@SneakyThrows
public Map<String, Long> dateHistogram(QueryBuilder queryBuilder, String field, DateHistogramInterval interval, String... indices) {
String dateHistogramKey = "dateHistogramKey"; // 自定義日期聚合key,保證上下文一致
// 構造聚合
AggregationBuilder aggregationBuilder = AggregationBuilders
.dateHistogram(dateHistogramKey) //自定義統計名,和下文獲取需一致
.field(field) // 日期欄位名
.format("yyyy-MM-dd") // 時間格式
.calendarInterval(interval) // 日曆間隔,例: 1s->1秒 1d->1天 1w->1周 1M->1月 1y->1年 ...
.minDocCount(0); // 最小文件數,比該值小就忽略
// 構造搜尋源
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder
.query(queryBuilder)
.aggregation(aggregationBuilder)
.size(0);
// 構造SearchRequest
SearchRequest searchRequest = new SearchRequest(indices);
searchRequest.source(searchSourceBuilder);
searchRequest.indicesOptions(
IndicesOptions.fromOptions(
true, // 是否忽略不可用索引
true, // 是否允許索引不存在
true, // 萬用字元表示式將擴充套件為開啟的索引
false // 萬用字元表示式將擴充套件為關閉的索引
));
// 執行請求
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
// 處理結果
ParsedDateHistogram dateHistogram = searchResponse.getAggregations().get(dateHistogramKey);
Iterator<? extends Histogram.Bucket> iterator = dateHistogram.getBuckets().iterator();
Map<String, Long> map = new HashMap<>();
while (iterator.hasNext()) {
Histogram.Bucket bucket = iterator.next();
map.put(bucket.getKeyAsString(), bucket.getDocCount());
}
return map;
}
/**
* 列表查詢
*/
@SneakyThrows
public <T extends BaseDocument> List<T> search(QueryBuilder queryBuilder, Class<T> clazz, String... indices) {
List<T> list = this.search(queryBuilder, null, 1, ESConstants.DEFAULT_PAGE_SIZE, clazz, indices);
return list;
}
/**
* 分頁列表查詢
*/
@SneakyThrows
public <T extends BaseDocument> List<T> search(QueryBuilder queryBuilder, SortBuilder sortBuilder, Integer page, Integer size, Class<T> clazz, String... indices) {
// 構造SearchSourceBuilder
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(queryBuilder);
searchSourceBuilder.sort(sortBuilder);
searchSourceBuilder.from((page - 1) * size);
searchSourceBuilder.size(size);
// 構造SearchRequest
SearchRequest searchRequest = new SearchRequest(indices);
searchRequest.source(searchSourceBuilder);
// 執行請求
SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
SearchHits hits = searchResponse.getHits();
SearchHit[] searchHits = hits.getHits();
List<T> list = CollectionUtil.newArrayList();
for (SearchHit hit : searchHits) {
T t = JSONUtil.toBean(hit.getSourceAsString(), clazz);
t.setId(hit.getId()); // 資料的唯一標識
t.setIndex(hit.getIndex());// 索引
list.add(t);
}
return list;
}
/**
* 刪除
*/
@SneakyThrows
public boolean deleteById(String id, String index) {
DeleteRequest deleteRequest = new DeleteRequest(index,id);
DeleteResponse deleteResponse = client.delete(deleteRequest, RequestOptions.DEFAULT);
return true;
}
}
六. 後臺介面
在SpringBoot整合了ElasticSearch的高階客戶端RestHighLevelClient,以及簡單了封裝方法之後,接下來就準備為前端提供統計資料、分頁列表查詢記錄、根據ID刪除記錄介面了。
1. 首頁控制檯
首頁控制檯需要今日IP訪問數,歷史總IP訪問數、近十天每天的登入次數統計,具體程式碼如下:
程式碼座標: youlai-admin#DashboardController
@Api(tags = "首頁控制檯")
@RestController
@RequestMapping("/api.admin/v1/dashboard")
@Slf4j
@AllArgsConstructor
public class DashboardController {
ElasticSearchService elasticSearchService;
@ApiOperation(value = "控制檯資料")
@GetMapping
public Result data() {
Map<String, Object> data = new HashMap<>();
// 今日IP數
long todayIpCount = getTodayIpCount();
data.put("todayIpCount", todayIpCount);
// 總IP數
long totalIpCount = getTotalIpCount();
data.put("totalIpCount", totalIpCount);
// 登入統計
int days = 10; // 統計天數
Map loginCount = getLoginCount(days);
data.put("loginCount", loginCount);
return Result.success(data);
}
private long getTodayIpCount() {
String date = LocalDateTime.now().format(DateTimeFormatter.ofPattern("yyyy-MM-dd"));
TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("date", date);
String indexName = ESConstants.LOGIN_INDEX_PATTERN + date; //索引名稱
// 這裡使用clientIP聚合計數,為什麼加.keyword字尾呢?下文給出截圖
long todayIpCount = elasticSearchService.countDistinct(termQueryBuilder, "clientIP.keyword", indexName);
return todayIpCount;
}
private long getTotalIpCount() {
long totalIpCount = elasticSearchService.countDistinct(null, "clientIP.keyword", ESConstants.LOGIN_INDEX_PATTERN);
return totalIpCount;
}
private Map getLoginCount(int days) {
LocalDateTime now = LocalDateTime.now();
DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd");
String startDate = now.plusDays(-days).format(formatter);
String endDate = now.format(formatter);
String[] indices = new String[days]; // 查詢ES索引陣列
String[] xData = new String[days]; // 柱狀圖x軸資料
for (int i = 0; i < days; i++) {
String date = now.plusDays(-i).format(formatter);
xData[i] = date;
indices[i] = ESConstants.LOGIN_INDEX_PREFIX + date;
}
// 查詢條件,範圍內日期統計
RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("date").from(startDate).to(endDate);
BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery()
.must(rangeQueryBuilder);
// 總數統計
Map<String, Long> totalCountMap = elasticSearchService.dateHistogram(
boolQueryBuilder,
"date", // 根據date欄位聚合統計登入數 logback-spring.xml 中的自定義擴充套件欄位 date
DateHistogramInterval.days(1),
indices);
// 當前使用者統計
HttpServletRequest request = RequestUtils.getRequest();
String clientIP = IPUtils.getIpAddr(request);
boolQueryBuilder.must(QueryBuilders.termQuery("clientIP", clientIP));
Map<String, Long> myCountMap = elasticSearchService.dateHistogram(boolQueryBuilder, "date", DateHistogramInterval.days(1), indices);
// 組裝echarts資料
Long[] totalCount = new Long[days];
Long[] myCount = new Long[days];
Arrays.sort(xData);// 預設升序
for (int i = 0; i < days; i++) {
String key = xData[i];
totalCount[i] = Convert.toLong(totalCountMap.get(key), 0l);
myCount[i] = Convert.toLong(myCountMap.get(key), 0l);
}
Map<String, Object> map = new HashMap<>(4);
map.put("xData", xData); // x軸座標
map.put("totalCount", totalCount); // 總數
map.put("myCount", myCount); // 我的
return map;
}
}
- 聚合欄位clientIP為什麼新增.keyword字尾?
2. 登入記錄分頁查詢介面
程式碼座標: youlai-admin # LoginRecordController
@Api(tags = "登入記錄")
@RestController
@RequestMapping("/api.admin/v1/login_records")
@Slf4j
@AllArgsConstructor
public class LoginRecordController {
ElasticSearchService elasticSearchService;
ITokenService tokenService;
@ApiOperation(value = "列表分頁")
@ApiImplicitParams({
@ApiImplicitParam(name = "page", value = "頁碼", defaultValue = "1", paramType = "query", dataType = "Long"),
@ApiImplicitParam(name = "limit", value = "每頁數量", defaultValue = "10", paramType = "query", dataType = "Long"),
@ApiImplicitParam(name = "startDate", value = "開始日期", paramType = "query", dataType = "String"),
@ApiImplicitParam(name = "endDate", value = "結束日期", paramType = "query", dataType = "String"),
@ApiImplicitParam(name = "clientIP", value = "客戶端IP", paramType = "query", dataType = "String")
})
@GetMapping
public Result list(
Integer page,
Integer limit,
String startDate,
String endDate,
String clientIP
) {
// 日期範圍
RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("date");
if (StrUtil.isNotBlank(startDate)) {
rangeQueryBuilder.from(startDate);
}
if (StrUtil.isNotBlank(endDate)) {
rangeQueryBuilder.to(endDate);
}
BoolQueryBuilder queryBuilder = QueryBuilders.boolQuery().must(rangeQueryBuilder);
if (StrUtil.isNotBlank(clientIP)) {
queryBuilder.must(QueryBuilders.wildcardQuery("clientIP", "*" + clientIP + "*"));
}
// 總記錄數
long count = elasticSearchService.count(queryBuilder, ESConstants.LOGIN_INDEX_PATTERN);
// 排序
FieldSortBuilder sortBuilder = new FieldSortBuilder("@timestamp").order(SortOrder.DESC);
// 分頁查詢
List<LoginRecord> list = elasticSearchService.search(queryBuilder, sortBuilder, page, limit, LoginRecord.class, ESConstants.LOGIN_INDEX_PATTERN);
// 遍歷獲取會話狀態
list.forEach(item -> {
String token = item.getToken();
int tokenStatus = 0;
if (StrUtil.isNotBlank(token)) {
tokenStatus = tokenService.getTokenStatus(item.getToken());
}
item.setStatus(tokenStatus);
});
return Result.success(list, count);
}
@ApiOperation(value = "刪除登入記錄")
@ApiImplicitParam(name = "ids", value = "id集合", required = true, paramType = "query", dataType = "String")
@DeleteMapping
public Result delete(@RequestBody List<BaseDocument> documents) {
documents.forEach(document -> elasticSearchService.deleteById(document.getId(), document.getIndex()));
return Result.success();
}
}
3. 強制下線介面
程式碼座標: youlai-admin#TokenController
- 這裡還是將JWT新增至黑名單,然後在閘道器限制被加入黑名單的JWT登入
@Api(tags = "令牌介面")
@RestController
@RequestMapping("/api.admin/v1/tokens")
@Slf4j
@AllArgsConstructor
public class TokenController {
ITokenService tokenService;
@ApiOperation(value = "強制下線")
@ApiImplicitParam(name = "token", value = "訪問令牌", required = true, paramType = "query", dataType = "String")
@PostMapping("/{token}/_invalidate")
@SneakyThrows
public Result invalidateToken(@PathVariable String token) {
boolean status = tokenService.invalidateToken(token);
return Result.judge(status);
}
}
程式碼座標: youlai-admin#TokenServiceImpl
@Override
@SneakyThrows
public boolean invalidateToken(String token) {
JWTPayload payload = JWTUtils.getJWTPayload(token);
// 計算是否過期
long currentTimeSeconds = System.currentTimeMillis() / 1000;
Long exp = payload.getExp();
if (exp < currentTimeSeconds) { // token已過期,無需加入黑名單
return true;
}
// 新增至黑名單使其失效
redisTemplate.opsForValue().set(AuthConstants.TOKEN_BLACKLIST_PREFIX + payload.getJti(), null, (exp - currentTimeSeconds), TimeUnit.SECONDS);
return true;
}
七. 前端介面
專案前端原始碼:youlai-mall-admin,以下只貼出頁面路徑,有興趣下載到本地檢視原始碼和效果
程式碼座標: src/views/dashboard/common/components/LoginCountChart.vue
- 登入次數統計、今日訪問IP統計、總訪問IP統計
程式碼座標: src/views/admin/record/login/index.vue
- 登入資訊,強制使用者下線,演示的是自己強制自己下線的效果
八. 問題
1. 日誌記錄登入時間比正常時間晚了8個小時
專案使用Docker部署,其中依賴openjdk映象時區是UTC,比北京時間晚了8個小時,執行以下命令修改時區解決問題
docker exec -it youlai-auth /bin/sh
echo "Asia/Shanghai" > /etc/timezone
docker restart youlai-auth
2. 用Nginx代理轉發,怎麼獲取使用者的真實IP?
在配置代理轉發的時候新增:
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
九. Kibana索引檢索
在LogStash的logout我們指定了索引的名稱 "%{[project]}-%{[action]}-%{+YYYY-MM-dd}"
在logback-spring.xml指定了project為youlai-auth,action為login,替換生成類似youlai-auth-login-2021-3-25的索引,其中日期是可變的,然後我們在Kibana介面建立youlai-auth-login-*索引模式來對日誌進行檢索。
- 建立youlai-auth-login-*索引模式
- 根據索引模式,設定日期範圍,進行登入日誌的檢索
十. 結語
至此,整個實戰過程已經完成,搭建了ELK環境,使用Spring AOP橫切來對登入日誌的定點的蒐集,最後通過SpringBoot整合ElasticSearch的高階Java客戶端RestHighLevelClient來對蒐集登入日誌資訊進行聚合計數、統計、以及日誌中訪問令牌操作來實現無狀態的JWT會話管理,強制JWT失效讓使用者下線。文中只貼出關鍵的程式碼,其中還有像IP轉地區的工具使用鑑於篇幅的原因並未一一說明,完整程式碼請參考git上的完整原始碼。點選跳轉
希望大家通過本篇文章能夠快速入門ElasticSearch,如果有問題歡迎留言或者加我微信(haoxianrui)。
終. 附錄
歡迎大家加入開源專案有來專案交流群,一起學習Spring Cloud微服務生態元件、分散式、Docker、K8S、Vue、element-ui、uni-app、微信小程式全棧等技術。
最後附上有來專案往期文章
後臺微服務
- Spring Cloud實戰 | 第一篇:Windows搭建Nacos服務
- Spring Cloud實戰 | 第二篇:Spring Cloud整合Nacos實現註冊中心
- Spring Cloud實戰 | 第三篇:Spring Cloud整合Nacos實現配置中心
- Spring Cloud實戰 | 第四篇:Spring Cloud整合Gateway實現API閘道器
- Spring Cloud實戰 | 第五篇:Spring Cloud整合OpenFeign實現微服務之間的呼叫
- Spring Cloud實戰 | 第六篇:Spring Cloud Gateway+Spring Security OAuth2+JWT實現微服務統一認證授權
- Spring Cloud實戰 | 最七篇:Spring Cloud Gateway+Spring Security OAuth2整合統一認證授權平臺下實現登出使JWT失效方案
- Spring Cloud實戰 | 最八篇:Spring Cloud +Spring Security OAuth2+ Vue前後端分離模式下無感知重新整理實現JWT續期
- Spring Cloud實戰 | 最九篇:Spring Security OAuth2認證伺服器統一認證自定義異常處理
- Spring Cloud實戰 | 第十篇 :Spring Cloud + Nacos整合Seata 1.4.1最新版本實現微服務架構中的分散式事務,進階之路必須要邁過的檻
- Spring Cloud實戰 | 第十一篇 :Spring Cloud Gateway閘道器實現對RESTful介面許可權和按鈕許可權細粒度控制
後臺管理前端
- vue-element-admin實戰 | 第一篇: 移除mock接入微服務介面,搭建SpringCloud+Vue前後端分離管理平臺
- vue-element-admin實戰 | 第二篇: 最小改動接入後臺實現根據許可權動態載入選單
微信小程式
應用部署