《JavaScript深度學習》資源連結清單
為方便讀者查詢,本文彙總了《JavaScript深度學習》一書中用到的部分網路資源連結。連結中內容可能隨時間變化,請讀者知悉。
關於本書
- 本書GitHub程式碼地址:https://github.com/tensorflow/tfjs-examples
第1章
表1-1中參考文獻
- a. Kaiming He et al., “Deep Residual Learning for Image Recognition,” Proc. IEEE Conference Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778, http://mng.bz/PO5P.
- b. Christian Szegedy et al., “Going Deeper with Convolutions,” Proc. IEEE Conference Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9, http://mng.bz/JzGv.
- c. Large Scale Visual Recognition Challenge 2017 (ILSVRC2017) results, http://image-net.org/challenges/LSVRC/2017/results.
- d. Yunpeng Chen et al., “Dual Path Networks,” https://arxiv.org/pdf/1707.01629.pdf.
- e. Yonghui Wu et al., “Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation,” submitted 26 Sept. 2016, https://arxiv.org/abs/1609.08144.
- f. Chung-Cheng Chiu et al., “State-of-the-Art Speech Recognition with Sequence-to-Sequence Models,” submitted 5 Dec. 2017, https://arxiv.org/abs/1712.01769.
- g. Volodymyr Mnih et al., “Playing Atari with Deep Reinforcement Learning,” NIPS Deep Learning Workshop 2013, https://arxiv.org/abs/1312.5602.
- h. David Silver et al., “Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm,” submitted 5 Dec. 2017, https://arxiv.org/abs/1712.01815.
- i. Varun Gulshan et al., “Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs,” JAMA, vol. 316, no. 22, 2016, pp. 2402–2410, http://mng.bz/wlDQ.
第2章
- 本章CodePen程式碼:https://codepen.io/collection/Xzwavm/
波士頓房價資料
- https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/data/train-data.csv
- https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/data/train-target.csv
- https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/data/test-data.csv
- https://storage.googleapis.com/tfjs-examples/multivariate-linear-regression/data/test-target.csv
第5章
- 5.1.3節音訊資料集:http://mng.bz/POGY
第6章
- 圖6-3的CodePen程式碼:https://codepen.io/tfjs-book/pen/MLQOem
- 圖6-4的CodePen程式碼:https://codepen.io/tfjs-book/pen/JxpMrj
- 加利福尼亞州住房資料集說明:https://developers.google.com/machine-learning/crash-course/california-housing-data-description
第7章
- 7.1.1節CodePen示例:https://codepen.io/tfjs-book/pen/BvzMZr
- 7.1.2節氣象資料集:https://www.kaggle.com/pankrzysiu/weather-archive-jena
- 7.3節的參考文獻:Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin, “Why Should I Trust You? Explaining the Predictions of Any Classifier,” 2016, https://arxiv.org/pdf/1602.04938.pdf.
- 7.3節TensorFlow.js的tSNE庫(https://github.com/tensorflow/tfjs-tsne)
第8章
- 表8-1中批次標準化(batch normalization)主要的可調引數:https://js.tensorflow.org/api/latest/#layers.batchNormalization
第9章
- 資訊欄9-2中的Embedding Projector工具:https://projector.tensorflow.org
- GloVe:https://nlp.stanford.edu/projects/glove/
9.4 延伸閱讀
- Chris Olah, “Understanding LSTM Networks,” blog, 27 Aug. 2015, http://mng.bz/m4Wa.
- Chris Olah and Shan Carter, “Attention and Augmented Recurrent Neural Networks,” Distill, 8 Sept. 2016, https://distill.pub/2016/augmented-rnns/.
- Andrej Karpathy, “The Unreasonable Effectiveness of Recurrent Neural Networks,” blog, 21 May 2015, http://mng.bz/6wK6.
- Zafarali Ahmed, “How to Visualize Your Recurrent Neural Network with Attention in Keras,” Medium, 29 June 2017, http://mng.bz/6w2e.
- Jason Brownlee, “How to Implement a Beam Search Decoder for Natural Language Processing,” 5 Jan. 2018, https://machinelearningmastery.com/beam-search-decoder-naturallanguage-processing/.
- Stephan Raaijmakers, Deep Learning for Natural Language Processing, Manning Publications, in press, https://www.manning.com/books/deep-learning-for-natural-language-processing.
第10章
- 谷歌Magenta專案中使用的Performance-RNN模型:https://magenta.tensorflow.org/performance-rnn
- David Ha和Douglas Eck的Sketch-RNN專案:http://mng.bz/omyv
- 克勞德·夏農1951年發表的論文:http://mng.bz/5AzB
- 10.3節開頭,英偉達的StyleGAN模型網站:https://thispersondoesnotexist.com
- Hao-Wen Dong等人的MuseGAN專案:https://salu133445.github.io/musegan/
- 10.3.4節提前準備好的示例程式:http://mng.bz/4eGw
- 延展閱讀中的GAN Lab:https://poloclub.github.io/ganlab/
第11章
- 11.1節,OpenAI Gym網站中的“Humanoid environment”問題:https://gym.openai.com/envs/Humanoid-v2/
- 11.2.2節,MIT OpenCourseWare網站上由Russ Tedrake編寫的MIT控制論公開課(6.832 Underactuated Robotics, Spring 2009)的教案:https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-832-underactuated-robotics-spring-2009/readings/MIT6_832s09_read_ch03.pdf
- 延展閱讀,倫敦大學學院的David Silver編寫的強化學習課堂筆記“UCL Course on RL”:http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
第12章
- 12.2.2節表12-3的相關程式碼:https://github.com/tensorflow/tfjs/tree/master/tfjs/integration_tests/
- 12.3.6節,TensorFlow.js微信小程式外掛:https://github.com/tensorflow/tfjs-wechat
12.4 延展閱讀
Denis Baylor et al.,“TFX: A TensorFlow-Based Production-Scale Machine Learning Platform,” KDD 2017, https://www.kdd.org/kdd2017/papers/view/tfx-a-tensorflow-based-production-scale-machine-learning-platform.
Raghuraman Krishnamoorthi,“Quantizing Deep Convolutional Networks forEfficient Inference: A Whitepaper,” June 2018, https://arxiv.org/pdf/1806.08342.pdf.
Rasmus Munk Larsen and Tatiana Shpeisman,“TensorFlow Graph Optimization,” https://ai.google/research/pubs/pub48051.
第13章
13.2.3節
- @tensorflow-models/coco-ssd:https://www.npmjs.com/package/@tensorflow-models/coco-ssd
- face-api.js:https://github.com/justadudewhohacks/face-api.js
- handtrack.js:https://www.npmjs.com/package/handsfree
- @tensorflow-models/posenet:https://www.npmjs.com/package/@tensorflow-models/posenet
- @tensorflow-models/speech-commands:https://www.npmjs.com/package/@tensorflow-models/speech-commands
- @tensorflow-models/toxicity:https://www.npmjs.com/package/@tensorflow-models/toxicity
- @tensorflow-models/universal-sentence-encoder:https://www.npmjs.com/package/@tensorflow-models/universal-sentence-encoder
- @magenta/music:https://www.npmjs.com/package/@magenta/music
13.4.3 探索TensorFlow.js生態
使用TensorFlow.js的主要參考資料是官方的線上文件:https://www.tensorflow.org/js/。最新的詳細API文件位於https://js.tensorflow.org/api/latest/。
你可以在Stack Overflow平臺上用“tensorflow.js”標籤諮詢關於TensorFlow.js的問題:https://stackoverflow.com/questions/tagged/tensorflow.js。
關於TensorFlow.js的一般討論,推薦使用這個谷歌網上論壇(Google Groups):https://groups.google.com/a/tensorflow.org/forum/#!forum/tfjs。
附錄A
A.1 在Linux上安裝tfjs-node-gpu
- NVIDIA Developer網站頁面“推薦開發者使用的GPU”:https://developer.nvidia.com/zh-cn/cuda-gpus
- Node.js下載網址:https://nodejs.org/en/download/
- 下載CUDA工具包(CUDA Toolkit):https://developer.nvidia.com/cuda-downloads
- 從NVIDIA Developer網站下載CuDNN:https://developer.nvidia.com/zh-cn/cudnn
A.2 在Windows上安裝tfjs-node-gpu
附錄B
- TensorFlow.js支援大量的張量運算,可以在TensorFlow官方文件中檢視相關介紹:https://js.tensorflow.org/api/latest
相關文章
- 《深入剖析Kubernetes》資源連結清單
- 《WebAssembly實戰》資源連結清單Web
- 《JavaScript高階程式設計(第4版)》資源連結清單JavaScript程式設計
- 《資料科學入門(第2版)》資源連結清單資料科學
- 《Python機器學習建模與部署:從Keras到Kubernetes》資源連結清單Python機器學習Keras
- 一份幫助你更好地理解深度學習的資源清單深度學習
- 機器學習、深度學習資源總結機器學習深度學習
- 學習 JavaScript 資料結構(二)——連結串列JavaScript資料結構
- 《小程式開發原理與實戰》資源連結清單
- vue學習資源(參考連結)Vue
- 你不可錯過的Java學習資源清單Java
- 單連結串列學習(一)
- 機器學習和深度學習資源蒐集機器學習深度學習
- 2019 年 12 個深度學習最佳書籍清單!值得收藏深度學習
- 學JS必看-JavaScript資料結構深度剖析JSJavaScript資料結構
- 《bash shell指令碼程式設計經典例項(第2版)》資源連結清單指令碼程式設計
- 資料結構學習--連結串列資料結構
- 資源 | 25個深度學習開源資料集,have fun !深度學習
- 20篇頂級深度學習論文(附連結)深度學習
- k8s資源清單K8S
- 送你一份配置清單:機器學習、深度學習電腦顯示卡配置方案機器學習深度學習
- 012 透過連結串列學習Rust之持久化單連結串列Rust持久化
- 012 通過連結串列學習Rust之持久化單連結串列Rust持久化
- JavaScript學習小結JavaScript
- JavaScript資料結構--連結串列JavaScript資料結構
- 04 . kubernetes資源清單YAML入門YAML
- 你不可錯過的Java學習資源清單(包含社群、大牛、專欄、書籍等)Java
- [譯] 機器學習專案清單機器學習
- 優秀程式設計師都應該學習的資料結構與演算法專案(GitHub 開源清單)程式設計師資料結構演算法Github
- JavaScript資料結構 之 連結串列JavaScript資料結構
- 2021年學習JavaScript的幾個資源(兼顧學習英文) - NirbhayJavaScript
- 【資料結構與演算法學習】線性表(順序表、單連結串列、雙向連結串列、迴圈連結串列)資料結構演算法
- 手把手教你從零搭建深度學習專案(附連結)深度學習
- 資料結構-單連結串列、雙連結串列資料結構
- 深度學習:為入門者打造的前十資源深度學習
- 機器學習工程師方向文章清單機器學習工程師
- 列一份學習平臺清單
- 【深度學習】深度學習md筆記總結第1篇:深度學習課程,要求【附程式碼文件】深度學習筆記