Pandas提供快速,靈活和富於表現力的資料結構,是強大的資料分析Python庫。
本文收錄於機器學習前置教程系列。
一、Series和DataFrame
Pandas建立在NumPy之上,更多NumPy相關的知識點可以參考我之前寫的文章前置機器學習(三):30分鐘掌握常用NumPy用法。
Pandas特別適合處理表格資料,如SQL表格、EXCEL表格。有序或無序的時間序列。具有行和列標籤的任意矩陣資料。
開啟Jupyter Notebook,匯入numpy和pandas開始我們的教程:
import numpy as np
import pandas as pd
1. pandas.Series
Series是帶有索引的一維ndarray陣列。索引值可不唯一,但必須是可雜湊的。
pd.Series([1, 3, 5, np.nan, 6, 8])
輸出:
0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
我們可以看到預設索引值為0、1、2、3、4、5這樣的數字。新增index
屬性,指定其為'c','a','i','yong','j','i'。
pd.Series([1, 3, 5, np.nan, 6, 8], index=['c','a','i','yong','j','i'])
輸出如下,我們可以看到index是可重複的。
c 1.0
a 3.0
i 5.0
yong NaN
j 6.0
i 8.0
dtype: float64
2. pandas.DataFrame
DataFrame是帶有行和列的表格結構。可以理解為多個Series物件的字典結構。
pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), index=['i','ii','iii'], columns=['A', 'B', 'C'])
輸出表格如下,其中index
對應它的行,columns
對應它的列。
A | B | C | |
---|---|---|---|
i | 1 | 2 | 3 |
ii | 4 | 5 | 6 |
iii | 7 | 8 | 9 |
二、Pandas常見用法
1. 訪問資料
準備資料,隨機生成6行4列的二維陣列,行標籤為從20210101到20210106的日期,列標籤為A、B、C、D。
import numpy as np
import pandas as pd
np.random.seed(20201212)
df = pd.DataFrame(np.random.randn(6, 4), index=pd.date_range('20210101', periods=6), columns=list('ABCD'))
df
展示表格如下:
A | B | C | D | |
---|---|---|---|---|
2021-01-01 | 0.270961 | -0.405463 | 0.348373 | 0.828572 |
2021-01-02 | 0.696541 | 0.136352 | -1.64592 | -0.69841 |
2021-01-03 | 0.325415 | -0.602236 | -0.134508 | 1.28121 |
2021-01-04 | -0.33032 | -1.40384 | -0.93809 | 1.48804 |
2021-01-05 | 0.348708 | 1.27175 | 0.626011 | -0.253845 |
2021-01-06 | -0.816064 | 1.30197 | 0.656281 | -1.2718 |
1.1 head()和tail()
檢視錶格前幾行:
df.head(2)
展示表格如下:
A | B | C | D | |
---|---|---|---|---|
2021-01-01 | 0.270961 | -0.405463 | 0.348373 | 0.828572 |
2021-01-02 | 0.696541 | 0.136352 | -1.64592 | -0.69841 |
檢視錶格後幾行:
df.tail(3)
展示表格如下:
A | B | C | D | |
---|---|---|---|---|
2021-01-04 | -0.33032 | -1.40384 | -0.93809 | 1.48804 |
2021-01-05 | 0.348708 | 1.27175 | 0.626011 | -0.253845 |
2021-01-06 | -0.816064 | 1.30197 | 0.656281 | -1.2718 |
1.2 describe()
describe
方法用於生成DataFrame的描述統計資訊。可以很方便的檢視資料集的分佈情況。注意,這裡的統計分佈不包含NaN
值。
df.describe()
展示如下:
A | B | C | D | |
---|---|---|---|---|
count | 6 | 6 | 6 | 6 |
mean | 0.0825402 | 0.0497552 | -0.181309 | 0.22896 |
std | 0.551412 | 1.07834 | 0.933155 | 1.13114 |
min | -0.816064 | -1.40384 | -1.64592 | -1.2718 |
25% | -0.18 | -0.553043 | -0.737194 | -0.587269 |
50% | 0.298188 | -0.134555 | 0.106933 | 0.287363 |
75% | 0.342885 | 0.987901 | 0.556601 | 1.16805 |
max | 0.696541 | 1.30197 | 0.656281 | 1.48804 |
我們首先回顧一下我們掌握的數學公式。
平均數(mean):
$$\bar x = \frac{\sum_{i=1}^{n}{x_i}}{n}$$
方差(variance):
$$s^2 = \frac{\sum_{i=1}^{n}{(x_i -\bar x)^2}}{n}$$
標準差(std):
$$s = \sqrt{\frac{\sum_{i=1}^{n}{(x_i -\bar x)^2}}{n}}$$
我們解釋一下pandas的describe統計資訊各屬性的意義。我們僅以 A
列為例。
count
表示計數。A列有6個資料不為空。mean
表示平均值。A列所有不為空的資料平均值為0.0825402。std
表示標準差。A列的標準差為0.551412。min
表示最小值。A列最小值為-0.816064。即,0%的資料比-0.816064小。25%
表示四分之一分位數。A列的四分之一分位數為-0.18。即,25%的資料比-0.18小。50%
表示二分之一分位數。A列的四分之一分位數為0.298188。即,50%的資料比0.298188小。75%
表示四分之三分位數。A列的四分之三分位數為0.342885。即,75%的資料比0.342885小。max
表示最大值。A列的最大值為0.696541。即,100%的資料比0.696541小。
1.3 T
T
一般表示Transpose
的縮寫,即轉置。行列轉換。
df.T
展示表格如下:
2021-01-01 | 2021-01-02 | 2021-01-03 | 2021-01-04 | 2021-01-05 | 2021-01-06 | |
---|---|---|---|---|---|---|
A | 0.270961 | 0.696541 | 0.325415 | -0.33032 | 0.348708 | -0.816064 |
B | -0.405463 | 0.136352 | -0.602236 | -1.40384 | 1.27175 | 1.30197 |
C | 0.348373 | -1.64592 | -0.134508 | -0.93809 | 0.626011 | 0.656281 |
D | 0.828572 | -0.69841 | 1.28121 | 1.48804 | -0.253845 | -1.2718 |
1.4 sort_values()
指定某一列進行排序,如下程式碼根據C
列進行正序排序。
df.sort_values(by='C')
展示表格如下:
A | B | C | D | |
---|---|---|---|---|
2021-01-02 | 0.696541 | 0.136352 | -1.64592 | -0.69841 |
2021-01-04 | -0.33032 | -1.40384 | -0.93809 | 1.48804 |
2021-01-03 | 0.325415 | -0.602236 | -0.134508 | 1.28121 |
2021-01-01 | 0.270961 | -0.405463 | 0.348373 | 0.828572 |
2021-01-05 | 0.348708 | 1.27175 | 0.626011 | -0.253845 |
2021-01-06 | -0.816064 | 1.30197 | 0.656281 | -1.2718 |
1.5 nlargest()
選擇某列最大的n行資料。如:df.nlargest(2,'A')
表示,返回A列最大的2行資料。
df.nlargest(2,'A')
展示表格如下:
A | B | C | D | |
---|---|---|---|---|
2021-01-02 | 0.696541 | 0.136352 | -1.64592 | -0.69841 |
2021-01-05 | 0.348708 | 1.27175 | 0.626011 | -0.253845 |
1.6 sample()
sample
方法表示檢視隨機的樣例資料。
df.sample(5)
表示返回隨機5行資料。
df.sample(5)
引數frac
表示fraction,分數的意思。frac=0.01即返回1%的隨機資料作為樣例展示。
df.sample(frac=0.01)
2. 選擇資料
2.1 根據標籤選擇
我們輸入df['A']
命令選取A列。
df['A']
輸出A列資料,同時也是一個Series物件:
2021-01-01 0.270961
2021-01-02 0.696541
2021-01-03 0.325415
2021-01-04 -0.330320
2021-01-05 0.348708
2021-01-06 -0.816064
Name: A, dtype: float64
df[0:3]
該程式碼與df.head(3)
同理。但df[0:3]
是NumPy的陣列選擇方式,這說明了Pandas對於NumPy具有良好的支援。
df[0:3]
展示表格如下:
A | B | C | D | |
---|---|---|---|---|
2021-01-01 | 0.270961 | -0.405463 | 0.348373 | 0.828572 |
2021-01-02 | 0.696541 | 0.136352 | -1.64592 | -0.69841 |
2021-01-03 | 0.325415 | -0.602236 | -0.134508 | 1.28121 |
通過loc方法指定行列標籤。
df.loc['2021-01-01':'2021-01-02', ['A', 'B']]
展示表格如下:
A | B | |
---|---|---|
2021-01-01 | 0.270961 | -0.405463 |
2021-01-02 | 0.696541 | 0.136352 |
2.2 根據位置選擇
iloc
與loc
不同。loc
指定具體的標籤,而iloc
指定標籤的索引位置。df.iloc[3:5, 0:3]
表示選取索引為3、4的行,索引為0、1、2的列。即,第4、5行,第1、2、3列。
注意,索引序號從0開始。冒號表示區間,左右兩側分別表示開始和結束。如3:5
表示左開右閉區間[3,5)
,即不包含5自身。
df.iloc[3:5, 0:3]
A | B | C | |
---|---|---|---|
2021-01-04 | -0.33032 | -1.40384 | -0.93809 |
2021-01-05 | 0.348708 | 1.27175 | 0.626011 |
df.iloc[:, 1:3]
B | C | |
---|---|---|
2021-01-01 | -0.405463 | 0.348373 |
2021-01-02 | 0.136352 | -1.64592 |
2021-01-03 | -0.602236 | -0.134508 |
2021-01-04 | -1.40384 | -0.93809 |
2021-01-05 | 1.27175 | 0.626011 |
2021-01-06 | 1.30197 | 0.656281 |
2.3 布林索引
DataFrame可根據條件進行篩選,當條件判斷True
時,返回。當條件判斷為False
時,過濾掉。
我們設定一個過濾器用來判斷A列是否大於0。
filter = df['A'] > 0
filter
輸出結果如下,可以看到2021-01-04
和2021-01-06
的行為False。
2021-01-01 True
2021-01-02 True
2021-01-03 True
2021-01-04 False
2021-01-05 True
2021-01-06 False
Name: A, dtype: bool
我們通過過濾器檢視資料集。
df[filter]
# df[df['A'] > 0]
檢視錶格我們可以發現,2021-01-04
和2021-01-06
的行被過濾掉了。
A | B | C | D | |
---|---|---|---|---|
2021-01-01 | 0.270961 | -0.405463 | 0.348373 | 0.828572 |
2021-01-02 | 0.696541 | 0.136352 | -1.64592 | -0.69841 |
2021-01-03 | 0.325415 | -0.602236 | -0.134508 | 1.28121 |
2021-01-05 | 0.348708 | 1.27175 | 0.626011 | -0.253845 |
3. 處理缺失值
準備資料。
df2 = df.copy()
df2.loc[:3, 'E'] = 1.0
f_series = {'2021-01-02': 1.0,'2021-01-03': 2.0,'2021-01-04': 3.0,'2021-01-05': 4.0,'2021-01-06': 5.0}
df2['F'] = pd.Series(f_series)
df2
展示表格如下:
A | B | C | D | F | E | |
---|---|---|---|---|---|---|
2021-01-01 | 0.270961 | -0.405463 | 0.348373 | 0.828572 | nan | 1 |
2021-01-02 | 0.696541 | 0.136352 | -1.64592 | -0.69841 | 1 | 1 |
2021-01-03 | 0.325415 | -0.602236 | -0.134508 | 1.28121 | 2 | 1 |
2021-01-04 | -0.33032 | -1.40384 | -0.93809 | 1.48804 | 3 | nan |
2021-01-05 | 0.348708 | 1.27175 | 0.626011 | -0.253845 | 4 | nan |
2021-01-06 | -0.816064 | 1.30197 | 0.656281 | -1.2718 | 5 | nan |
3.1 dropna()
使用dropna方法清空NaN值。注意:dropa方法返回新的DataFrame,並不會改變原有的DataFrame。
df2.dropna(how='any')
以上程式碼表示,當行資料有任意的數值為空時,刪除。
A | B | C | D | F | E | |
---|---|---|---|---|---|---|
2021-01-02 | 0.696541 | 0.136352 | -1.64592 | -0.69841 | 1 | 1 |
2021-01-03 | 0.325415 | -0.602236 | -0.134508 | 1.28121 | 2 | 1 |
3.2 fillna()
使用filna命令填補NaN值。
df2.fillna(df2.mean())
以上程式碼表示,使用每一列的平均值來填補空缺。同樣地,fillna並不會更新原有的DataFrame,如需更新原有DataFrame使用程式碼df2 = df2.fillna(df2.mean())
。
展示表格如下:
A | B | C | D | F | E | |
---|---|---|---|---|---|---|
2021-01-01 | 0.270961 | -0.405463 | 0.348373 | 0.828572 | 3 | 1 |
2021-01-02 | 0.696541 | 0.136352 | -1.64592 | -0.69841 | 1 | 1 |
2021-01-03 | 0.325415 | -0.602236 | -0.134508 | 1.28121 | 2 | 1 |
2021-01-04 | -0.33032 | -1.40384 | -0.93809 | 1.48804 | 3 | 1 |
2021-01-05 | 0.348708 | 1.27175 | 0.626011 | -0.253845 | 4 | 1 |
2021-01-06 | -0.816064 | 1.30197 | 0.656281 | -1.2718 | 5 | 1 |
4. 操作方法
4.1 agg()
agg是Aggregate的縮寫,意為聚合。
常用聚合方法如下:
- mean(): Compute mean of groups
- sum(): Compute sum of group values
- size(): Compute group sizes
- count(): Compute count of group
- std(): Standard deviation of groups
- var(): Compute variance of groups
- sem(): Standard error of the mean of groups
- describe(): Generates descriptive statistics
- first(): Compute first of group values
- last(): Compute last of group values
- nth() : Take nth value, or a subset if n is a list
- min(): Compute min of group values
- max(): Compute max of group values
df.mean()
返回各列平均值
A 0.082540
B 0.049755
C -0.181309
D 0.228960
dtype: float64
可通過加引數axis檢視行平均值。
df.mean(axis=1)
輸出:
2021-01-01 0.260611
2021-01-02 -0.377860
2021-01-03 0.217470
2021-01-04 -0.296053
2021-01-05 0.498156
2021-01-06 -0.032404
dtype: float64
如果我們想檢視某一列的多項聚合統計怎麼辦?
這時我們可以呼叫agg方法:
df.agg(['std','mean'])['A']
返回結果顯示標準差std和均值mean:
std 0.551412
mean 0.082540
Name: A, dtype: float64
對於不同的列應用不同的聚合函式:
df.agg({'A':['max','mean'],'B':['mean','std','var']})
返回結果如下:
A | B | |
---|---|---|
max | 0.696541 | nan |
mean | 0.0825402 | 0.0497552 |
std | nan | 1.07834 |
var | nan | 1.16281 |
4.2 apply()
apply()是對方法的呼叫。
如df.apply(np.sum)
表示每一列呼叫np.sum方法,返回每一列的數值和。
df.apply(np.sum)
輸出結果為:
A 0.495241
B 0.298531
C -1.087857
D 1.373762
dtype: float64
apply方法支援lambda表示式。
df.apply(lambda n: n*2)
A | B | C | D | |
---|---|---|---|---|
2021-01-01 | 0.541923 | -0.810925 | 0.696747 | 1.65714 |
2021-01-02 | 1.39308 | 0.272704 | -3.29185 | -1.39682 |
2021-01-03 | 0.65083 | -1.20447 | -0.269016 | 2.56242 |
2021-01-04 | -0.66064 | -2.80768 | -1.87618 | 2.97607 |
2021-01-05 | 0.697417 | 2.5435 | 1.25202 | -0.50769 |
2021-01-06 | -1.63213 | 2.60393 | 1.31256 | -2.5436 |
4.3 value_counts()
value_counts方法檢視各行、列的數值重複統計。
我們重新生成一些整數資料,來保證有一定的資料重複。
np.random.seed(101)
df3 = pd.DataFrame(np.random.randint(0,9,size = (6,4)),columns=list('ABCD'))
df3
A | B | C | D | |
---|---|---|---|---|
0 | 1 | 6 | 7 | 8 |
1 | 4 | 8 | 5 | 0 |
2 | 5 | 8 | 1 | 3 |
3 | 8 | 3 | 3 | 2 |
4 | 8 | 3 | 7 | 0 |
5 | 7 | 8 | 4 | 3 |
呼叫value_counts()方法。
df3['A'].value_counts()
檢視輸出我們可以看到 A列的數字8有兩個,其他數字的數量為1。
8 2
7 1
5 1
4 1
1 1
Name: A, dtype: int64
4.4 str
Pandas內建字串處理方法。
names = pd.Series(['andrew','bobo','claire','david','4'])
names.str.upper()
通過以上程式碼我們將Series中的字串全部設定為大寫。
0 ANDREW
1 BOBO
2 CLAIRE
3 DAVID
4 4
dtype: object
首字母大寫:
names.str.capitalize()
輸出為:
0 Andrew
1 Bobo
2 Claire
3 David
4 4
dtype: object
判斷是否為數字:
names.str.isdigit()
輸出為:
0 False
1 False
2 False
3 False
4 True
dtype: bool
字串分割:
tech_finance = ['GOOG,APPL,AMZN','JPM,BAC,GS']
tickers = pd.Series(tech_finance)
tickers.str.split(',').str[0:2]
以逗號分割字串,結果為:
0 [GOOG, APPL]
1 [JPM, BAC]
dtype: object
5. 合併
5.1 concat()
concat用來將資料集串聯起來。我們先準備資料。
data_one = {'Col1': ['A0', 'A1', 'A2', 'A3'],'Col2': ['B0', 'B1', 'B2', 'B3']}
data_two = {'Col1': ['C0', 'C1', 'C2', 'C3'], 'Col2': ['D0', 'D1', 'D2', 'D3']}
one = pd.DataFrame(data_one)
two = pd.DataFrame(data_two)
使用concat方法將兩個資料集串聯起來。
pt(pd.concat([one,two]))
得到表格:
Col1 | Col2 | |
---|---|---|
0 | A0 | B0 |
1 | A1 | B1 |
2 | A2 | B2 |
3 | A3 | B3 |
0 | C0 | D0 |
1 | C1 | D1 |
2 | C2 | D2 |
3 | C3 | D3 |
5.2 merge()
merge相當於SQL操作中的join方法,用於將兩個資料集通過某種關係連線起來
registrations = pd.DataFrame({'reg_id':[1,2,3,4],'name':['Andrew','Bobo','Claire','David']})
logins = pd.DataFrame({'log_id':[1,2,3,4],'name':['Xavier','Andrew','Yolanda','Bobo']})
我們根據name
來連線兩個張表,連線方式為outer
。
pd.merge(left=registrations, right=logins, how='outer',on='name')
返回結果為:
reg_id | name | log_id | |
---|---|---|---|
0 | 1 | Andrew | 2 |
1 | 2 | Bobo | 4 |
2 | 3 | Claire | nan |
3 | 4 | David | nan |
4 | nan | Xavier | 1 |
5 | nan | Yolanda | 3 |
我們注意,how : {'left', 'right', 'outer', 'inner'} 有4種連線方式。表示是否選取左右兩側表的nan值。如left表示保留左側表中所有資料,當遇到右側表資料為nan值時,不顯示右側的資料。
簡單來說,把left表和right表看作兩個集合。
- left表示取左表全部集合+兩表交集
- right表示取右表全部集合+兩表交集
- outer表示取兩表並集
- inner表示取兩表交集
6. 分組GroupBy
Pandas中的分組功能非常類似於SQL語句SELECT Column1, Column2, mean(Column3), sum(Column4)FROM SomeTableGROUP BY Column1, Column2
。即使沒有接觸過SQL也沒有關係,分組就相當於把表格資料按照某一列進行拆分、統計、合併的過程。
準備資料。
np.random.seed(20201212)
df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
'C': np.random.randn(8),
'D': np.random.randn(8)})
df
可以看到,我們的A列和B列有很多重複資料。這時我們可以根據foo/bar或者one/two進行分組。
A | B | C | D | |
---|---|---|---|---|
0 | foo | one | 0.270961 | 0.325415 |
1 | bar | one | -0.405463 | -0.602236 |
2 | foo | two | 0.348373 | -0.134508 |
3 | bar | three | 0.828572 | 1.28121 |
4 | foo | two | 0.696541 | -0.33032 |
5 | bar | two | 0.136352 | -1.40384 |
6 | foo | one | -1.64592 | -0.93809 |
7 | foo | three | -0.69841 | 1.48804 |
6.1 單列分組
我們應用groupby
方法將上方表格中的資料進行分組。
df.groupby('A')
執行上方程式碼可以看到,groupby方法返回的是一個型別為DataFrameGroupBy
的物件。我們無法直接檢視,需要應用聚合函式。參考本文4.1節。
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000014C6742E248>
我們應用聚合函式sum試試。
df.groupby('A').sum()
展示表格如下:
A | C | D |
---|---|---|
bar | 0.559461 | -0.724868 |
foo | -1.02846 | 0.410533 |
6.2 多列分組
groupby
方法支援將多個列作為引數傳入。
df.groupby(['A', 'B']).sum()
分組後顯示結果如下:
A | B | C | D |
---|---|---|---|
bar | one | -0.405463 | -0.602236 |
one | -0.405463 | -0.602236 | |
three | 0.828572 | 1.28121 | |
two | 0.136352 | -1.40384 | |
foo | one | -1.37496 | -0.612675 |
three | -0.69841 | 1.48804 | |
two | 1.04491 | -0.464828 |
6.3 應用多聚合方法
我們應用agg()
,將聚合方法陣列作為引數傳入方法。下方程式碼根據A分類且只統計C
列的數值。
df.groupby('A')['C'].agg([np.sum, np.mean, np.std])
可以看到bar組與foo組各聚合函式的結果如下:
A | sum | mean | std |
---|---|---|---|
bar | 0.559461 | 0.186487 | 0.618543 |
foo | -1.02846 | -0.205692 | 0.957242 |
6.4 不同列進行不同聚合統計
下方程式碼對C、D列分別進行不同的聚合統計,對C列進行求和,對D列進行標準差統計。
df.groupby('A').agg({'C': 'sum', 'D': lambda x: np.std(x, ddof=1)})
輸出如下:
A | C | D |
---|---|---|
bar | 0.559461 | 1.37837 |
foo | -1.02846 | 0.907422 |
6.5 更多
更多關於Pandas的goupby
方法請參考官網:https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html
三、Pandas 進階用法
1. reshape
reshape
表示重塑表格。對於複雜表格,我們需要將其轉換成適合我們理解的樣子,比如根據某些屬性分組後進行單獨統計。
1.1 stack() 和 unstack()
stack
方法將表格分為索引和資料兩個部分。索引各列保留,資料堆疊放置。
準備資料。
tuples = list(zip(*[['bar', 'bar', 'baz', 'baz','foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two','one', 'two', 'one', 'two']]))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
根據上方程式碼,我們建立了一個複合索引。
MultiIndex([('bar', 'one'),
('bar', 'two'),
('baz', 'one'),
('baz', 'two'),
('foo', 'one'),
('foo', 'two'),
('qux', 'one'),
('qux', 'two')],
names=['first', 'second'])
我們建立一個具備複合索引的DataFrame。
np.random.seed(20201212)
df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
df
輸出如下:
A | B | C | D |
---|---|---|---|
bar | one | 0.270961 | -0.405463 |
two | 0.348373 | 0.828572 | |
baz | one | 0.696541 | 0.136352 |
two | -1.64592 | -0.69841 | |
foo | one | 0.325415 | -0.602236 |
two | -0.134508 | 1.28121 | |
qux | one | -0.33032 | -1.40384 |
two | -0.93809 | 1.48804 |
我們執行stack
方法。
stacked = df.stack()
stacked
輸出堆疊(壓縮)後的表格如下。注意:你使用Jupyter Notebook/Lab進行的輸出可能和如下結果不太一樣。下方輸出的各位為了方便在Markdown中顯示有一定的調整。
first second
bar one A 0.942502
bar one B 0.060742
bar two A 1.340975
bar two B -1.712152
baz one A 1.899275
baz one B 1.237799
baz two A -1.589069
baz two B 1.288342
foo one A -0.326792
foo one B 1.576351
foo two A 1.526528
foo two B 1.410695
qux one A 0.420718
qux one B -0.288002
qux two A 0.361586
qux two B 0.177352
dtype: float64
我們執行unstack將資料進行展開。
stacked.unstack()
輸出原表格。
A | B | C | D |
---|---|---|---|
bar | one | 0.270961 | -0.405463 |
two | 0.348373 | 0.828572 | |
baz | one | 0.696541 | 0.136352 |
two | -1.64592 | -0.69841 | |
foo | one | 0.325415 | -0.602236 |
two | -0.134508 | 1.28121 | |
qux | one | -0.33032 | -1.40384 |
two | -0.93809 | 1.48804 |
我們加入引數level
。
stacked.unstack(level=0)
#stacked.unstack(level=1)
當level=0
時得到如下輸出,大家可以試試level=1
時輸出什麼。
second | first | bar | baz | foo | qux |
---|---|---|---|---|---|
one | A | 0.942502 | 1.89927 | -0.326792 | 0.420718 |
one | B | 0.060742 | 1.2378 | 1.57635 | -0.288002 |
two | A | 1.34097 | -1.58907 | 1.52653 | 0.361586 |
two | B | -1.71215 | 1.28834 | 1.4107 | 0.177352 |
1.2 pivot_table()
pivot_table表示透視表,是一種對資料動態排布並且分類彙總的表格格式。
我們生成無索引列的DataFrame。
np.random.seed(99)
df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3,
'B': ['A', 'B', 'C'] * 4,
'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
'D': np.random.randn(12),
'E': np.random.randn(12)})
df
展示表格如下:
A | B | C | D | E | |
---|---|---|---|---|---|
0 | one | A | foo | -0.142359 | 0.0235001 |
1 | one | B | foo | 2.05722 | 0.456201 |
2 | two | C | foo | 0.283262 | 0.270493 |
3 | three | A | bar | 1.32981 | -1.43501 |
4 | one | B | bar | -0.154622 | 0.882817 |
5 | one | C | bar | -0.0690309 | -0.580082 |
6 | two | A | foo | 0.75518 | -0.501565 |
7 | three | B | foo | 0.825647 | 0.590953 |
8 | one | C | foo | -0.113069 | -0.731616 |
9 | one | A | bar | -2.36784 | 0.261755 |
10 | two | B | bar | -0.167049 | -0.855796 |
11 | three | C | bar | 0.685398 | -0.187526 |
通過觀察資料,我們可以顯然得出A、B、C列的具備一定屬性含義。我們執行pivot_table
方法。
pd.pivot_table(df, values=['D','E'], index=['A', 'B'], columns=['C'])
上方程式碼的意思為,將D、E列作為資料列,A、B作為複合行索引,C的資料值作為列索引。
('D', 'bar') | ('D', 'foo') | ('E', 'bar') | ('E', 'foo') | |
---|---|---|---|---|
('one', 'A') | -2.36784 | -0.142359 | 0.261755 | 0.0235001 |
('one', 'B') | -0.154622 | 2.05722 | 0.882817 | 0.456201 |
('one', 'C') | -0.0690309 | -0.113069 | -0.580082 | -0.731616 |
('three', 'A') | 1.32981 | nan | -1.43501 | nan |
('three', 'B') | nan | 0.825647 | nan | 0.590953 |
('three', 'C') | 0.685398 | nan | -0.187526 | nan |
('two', 'A') | nan | 0.75518 | nan | -0.501565 |
('two', 'B') | -0.167049 | nan | -0.855796 | nan |
('two', 'C') | nan | 0.283262 | nan | 0.270493 |
2. 時間序列
date_range
是Pandas自帶的生成日期間隔的方法。我們執行下方程式碼:
rng = pd.date_range('1/1/2021', periods=100, freq='S')
pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
date_range方法從2021年1月1日0秒開始,以1秒作為時間間隔執行100次時間段的劃分。輸出結果如下:
2021-01-01 00:00:00 475
2021-01-01 00:00:01 145
2021-01-01 00:00:02 13
2021-01-01 00:00:03 240
2021-01-01 00:00:04 183
...
2021-01-01 00:01:35 413
2021-01-01 00:01:36 330
2021-01-01 00:01:37 272
2021-01-01 00:01:38 304
2021-01-01 00:01:39 151
Freq: S, Length: 100, dtype: int32
我們將freq
的引數值從S(second)改為M(Month)試試看。
rng = pd.date_range('1/1/2021', periods=100, freq='M')
pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
輸出:
2021-01-31 311
2021-02-28 256
2021-03-31 327
2021-04-30 151
2021-05-31 484
...
2028-12-31 170
2029-01-31 492
2029-02-28 205
2029-03-31 90
2029-04-30 446
Freq: M, Length: 100, dtype: int32
我們設定可以以季度作為頻率進行日期生成。
prng = pd.period_range('2018Q1', '2020Q4', freq='Q-NOV')
pd.Series(np.random.randn(len(prng)), prng)
輸出2018第一季度到2020第四季度間的全部季度。
2018Q1 0.833025
2018Q2 -0.509514
2018Q3 -0.735542
2018Q4 -0.224403
2019Q1 -0.119709
2019Q2 -1.379413
2019Q3 0.871741
2019Q4 0.877493
2020Q1 0.577611
2020Q2 -0.365737
2020Q3 -0.473404
2020Q4 0.529800
Freq: Q-NOV, dtype: float64
3. 分類
Pandas有一種特殊的資料型別叫做"目錄",即dtype="category",我們根據將某些列設定為目錄來進行分類。
準備資料。
df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6], "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']})
df
id | raw_grade | |
---|---|---|
0 | 1 | a |
1 | 2 | b |
2 | 3 | b |
3 | 4 | a |
4 | 5 | a |
5 | 6 | e |
我們新增一個新列grade
並將它的資料型別設定為category
。
df["grade"] = df["raw_grade"].astype("category")
df["grade"]
我們可以看到grade
列只有3種值a,b,e。
0 a
1 b
2 b
3 a
4 a
5 e
Name: grade, dtype: category
Categories (3, object): ['a', 'b', 'e']
我們按順序替換a、b、e為very good、good、very bad。
df["grade"].cat.categories = ["very good", "good", "very bad"]
此時的表格為:
id | raw_grade | grade | |
---|---|---|---|
0 | 1 | a | very good |
1 | 2 | b | good |
2 | 3 | b | good |
3 | 4 | a | very good |
4 | 5 | a | very good |
5 | 6 | e | very bad |
我們對錶格進行排序:
df.sort_values(by="grade", ascending=False)
id | raw_grade | grade | |
---|---|---|---|
5 | 6 | e | very bad |
1 | 2 | b | good |
2 | 3 | b | good |
0 | 1 | a | very good |
3 | 4 | a | very good |
4 | 5 | a | very good |
檢視各類別的數量:
df.groupby("grade").size()
以上程式碼輸出為:
grade
very good 3
good 2
very bad 1
dtype: int64
4. IO
Pandas支援直接從檔案中讀寫資料,如CSV、JSON、EXCEL等檔案格式。Pandas支援的檔案格式如下。
Format Type | Data Description | Reader | Writer |
---|---|---|---|
text | CSV | read_csv | to_csv |
text | Fixed-Width Text File | read_fwf | |
text | JSON | read_json | to_json |
text | HTML | read_html | to_html |
text | Local clipboard | read_clipboard | to_clipboard |
MS Excel | read_excel | to_excel | |
binary | OpenDocument | read_excel | |
binary | HDF5 Format | read_hdf | to_hdf |
binary | Feather Format | read_feather | to_feather |
binary | Parquet Format | read_parquet | to_parquet |
binary | ORC Format | read_orc | |
binary | Msgpack | read_msgpack | to_msgpack |
binary | Stata | read_stata | to_stata |
binary | SAS | read_sas | |
binary | SPSS | read_spss | |
binary | Python Pickle Format | read_pickle | to_pickle |
SQL | SQL | read_sql | to_sql |
SQL | Google BigQuery | read_gbq | to_gbq |
我們僅以CSV檔案為例作為講解。其他格式請參考上方表格。
我們從CSV檔案匯入資料。大家不用特別在意下方網址的域名地址。
df = pd.read_csv("http://blog.caiyongji.com/assets/housing.csv")
檢視前5行資料:
df.head(5)
longitude | latitude | housing_median_age | total_rooms | total_bedrooms | population | households | median_income | median_house_value | ocean_proximity | |
---|---|---|---|---|---|---|---|---|---|---|
0 | -122.23 | 37.88 | 41 | 880 | 129 | 322 | 126 | 8.3252 | 452600 | NEAR BAY |
1 | -122.22 | 37.86 | 21 | 7099 | 1106 | 2401 | 1138 | 8.3014 | 358500 | NEAR BAY |
2 | -122.24 | 37.85 | 52 | 1467 | 190 | 496 | 177 | 7.2574 | 352100 | NEAR BAY |
3 | -122.25 | 37.85 | 52 | 1274 | 235 | 558 | 219 | 5.6431 | 341300 | NEAR BAY |
4 | -122.25 | 37.85 | 52 | 1627 | 280 | 565 | 259 | 3.8462 | 342200 | NEAR BAY |
5. 繪圖
Pandas支援matplotlib,matplotlib是功能強大的Python視覺化工具。本節僅對Pandas支援的繪圖方法進行簡單介紹,我們將會在下一篇文章中進行matplotlib的詳細介紹。為了不錯過更新,歡迎大家關注我。
np.random.seed(999)
df = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
我們直接呼叫plot
方法進行展示。
這裡有兩個需要注意的地方:
- 該plot方法是通過Pandas呼叫的plot方法,而非matplotlib。
- 我們知道Python語言是無需分號進行結束語句的。此處的分號表示執行繪圖渲染後直接顯示影像。
df.plot();
df.plot.bar();
df.plot.bar(stacked=True);
四、更多
我們下篇將講解matplotlib的相關知識點,歡迎關注機器學習前置教程系列,或我的個人部落格http://blog.caiyongji.com/同步更新。