173. Binary Search Tree Iterator
題目:
173. Binary Search Tree Iterator
Medium
3173292Add to ListShare
Implement the BSTIterator
class that represents an iterator over the in-order traversal of a binary search tree (BST):
BSTIterator(TreeNode root)
Initializes an object of theBSTIterator
class. Theroot
of the BST is given as part of the constructor. The pointer should be initialized to a non-existent number smaller than any element in the BST.boolean hasNext()
Returnstrue
if there exists a number in the traversal to the right of the pointer, otherwise returnsfalse
.int next()
Moves the pointer to the right, then returns the number at the pointer.
Notice that by initializing the pointer to a non-existent smallest number, the first call to next()
will return the smallest element in the BST.
You may assume that next()
calls will always be valid. That is, there will be at least a next number in the in-order traversal when next()
is called.
Example 1:
Input ["BSTIterator", "next", "next", "hasNext", "next", "hasNext", "next", "hasNext", "next", "hasNext"] [[[7, 3, 15, null, null, 9, 20]], [], [], [], [], [], [], [], [], []] Output [null, 3, 7, true, 9, true, 15, true, 20, false] Explanation BSTIterator bSTIterator = new BSTIterator([7, 3, 15, null, null, 9, 20]); bSTIterator.next(); // return 3 bSTIterator.next(); // return 7 bSTIterator.hasNext(); // return True bSTIterator.next(); // return 9 bSTIterator.hasNext(); // return True bSTIterator.next(); // return 15 bSTIterator.hasNext(); // return True bSTIterator.next(); // return 20 bSTIterator.hasNext(); // return False
Constraints:
- The number of nodes in the tree is in the range
[1, 10^5]
. 0 <= Node.val <= 106
- At most
105
calls will be made tohasNext
, andnext
.
Follow up:
- Could you implement
next()
andhasNext()
to run in averageO(1)
time and useO(h)
memory, whereh
is the height of the tree?
思路:
中序遍歷,左中右。因為代替遞迴,直接想到stack,也符合follow up裡的時間和空間。思路其實就是用棧模擬中序遍歷,有左就一直往左,並且把node加入stack,每次的next就是棧頂node的值。然後依據棧頂的node,如果有右,則pop當前棧頂,把當前右子壓入棧,並且再次一直往左走即可。
程式碼:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class BSTIterator {
public:
BSTIterator(TreeNode* root) {
while(root)
{
s.push(root);
root=root->left;
}
}
int next() {
auto t=s.top();
int ans=t->val;
s.pop();
t=t->right;
while(t)
{
s.push(t);
t=t->left;
}
return ans;
}
bool hasNext() {
return s.size()?true:false;
}
private:
stack<TreeNode*> s;
};
/**
* Your BSTIterator object will be instantiated and called as such:
* BSTIterator* obj = new BSTIterator(root);
* int param_1 = obj->next();
* bool param_2 = obj->hasNext();
*/
相關文章
- 669-Trim a Binary Search Tree
- 501-Find Mode in Binary Search Tree
- LeetCode 98. Validate Binary Search TreeLeetCode
- [LeetCode] 501. Find Mode in Binary Search TreeLeetCode
- 108-Convert Sorted Array to Binary Search Tree
- 235-Lowest Common Ancestor of a Binary Search Tree
- [leetcode]convert-sorted-array-to-binary-search-treeLeetCode
- LeetCode 501. Find Mode in Binary Search TreeLeetCode
- [LeetCode] 109. Convert Sorted List to Binary Search TreeLeetCode
- Java for LeetCode 109 Convert Sorted List to Binary Search TreeJavaLeetCode
- 二分搜尋樹(Binary Search Tree)
- 二叉搜尋樹(Binary Search Tree)(Java實現)Java
- Traversals of binary tree
- 如何在Java中實現二叉搜尋樹( binary search tree)?Java
- Leetcode Binary Tree PathsLeetCode
- [LintCode] Check Full Binary Tree
- 257-Binary Tree Paths
- 543-Diameter of Binary Tree
- 563-Binary Tree Tilt
- 655-Print Binary Tree
- 654-Maximum Binary Tree
- 814-Binary Tree Pruning
- 110-Balanced Binary Tree
- 545. Boundary of Binary Tree
- 257. Binary Tree Paths
- Construct String from Binary TreeStruct
- 226-Invert Binary Tree
- [LintCode] Binary Tree Level Order
- [LeetCode] 226. Invert Binary TreeLeetCode
- [LeetCode] 543. Diameter of Binary TreeLeetCode
- 111-Minimum Depth of Binary Tree
- 662-Maximum Width of Binary Tree
- Binary-tree-level-order-traversal
- 104. Maximum Depth of Binary Tree
- LeetCode 543. Diameter of Binary TreeLeetCode
- Binary Tree Level Order Traversal [LEETCODE]LeetCode
- LeetCode545.Boundary-of-Binary-TreeLeetCode
- Leetcode 226. Invert Binary TreeLeetCode