Problem
Given a binary search tree (BST) with duplicates, find all the mode(s) (the most frequently occurred element) in the given BST.
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than or equal to the node`s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node`s key.
Both the left and right subtrees must also be binary search trees.
For example:
Given BST [1,null,2,2],
1
2
/
2
return [2].
Note: If a tree has more than one mode, you can return them in any order.
Follow up: Could you do that without using any extra space? (Assume that the implicit stack space incurred due to recursion does not count).
Solution
class Solution {
int count = 0;
int maxCount = 0;
Integer pre = null;
public int[] findMode(TreeNode root) {
List<Integer> resList = new ArrayList<>();
helper(root, resList);
return resList.stream().mapToInt(i->i).toArray();
}
private void helper(TreeNode root, List<Integer> res) {
if (root == null) return;
helper(root.left, res);
if (pre == null) {
pre = root.val;
count = 1;
maxCount = 1;
res.add(root.val);
} else {
if (root.val == pre) {
count++;
if (count > maxCount) {
res.clear();
maxCount = count;
}
} else {
pre = root.val;
count = 1;
}
if (count == maxCount) {
res.add(root.val);
}
}
helper(root.right, res);
}
}