針對neumann邊界條件的差分法程式碼
需要新增人工的Dirichlet邊界
考慮的問題仍然是矩形區域的泊松方程。
如果整個區域都採用Neumann邊界條件,即
∂
Ω
N
=
∂
Ω
\partial\Omega_{N}=\partial\Omega
∂ΩN=∂Ω,則這個問題沒有定解,因為對於某個精確解
u
u
u而言,針對任意的常數C,
u
+
c
u+c
u+c都是解
為此,我們常常需要新增一個人工提供的Dirichlet邊界條件,比如說在這裡,我們選取
{
−
1
}
×
[
−
1
,
1
]
\{-1\}\times[-1,1]
{−1}×[−1,1]為Dirichlet邊界,也就是說矩形區域的左邊為Dirichlet邊界條件。那麼問題就修改為:
假設我們已經對區域進行了對應的網格剖分:
x
i
=
i
∗
δ
x
,
i
=
0
,
…
,
M
−
1
x_{i}=i*\delta x,i=0,\ldots,M-1
xi=i∗δx,i=0,…,M−1
y
j
=
j
∗
δ
y
,
i
=
0
,
…
,
N
−
1
y_{j}=j*\delta y,i=0,\ldots,N-1
yj=j∗δy,i=0,…,N−1
下面開始重點闡述在邊界上偏導數的處理。
1:一階差分近似
u N − 1 , j − u N − 2 , j δ x = u x ( x N − 1 , y j ) \frac{u_{N-1,j} - u_{N-2,j}}{\delta x}=u_{x}(x_{N-1},y_{j}) δxuN−1,j−uN−2,j=ux(xN−1,yj),精度是 O ( h ) O(h) O(h),其他兩條Neumann邊界處理一樣。
# -*- coding: utf-8 -*-
"""
Created on Sat Oct 10 14:09:35 2020
@author: 2001213226
"""
import torch
import time
import numpy as np
import matplotlib.pyplot as plt
import torch.nn as nn
def UU(X, order,prob):
if prob==1:
temp = 10*(X[:,0]+X[:,1])**2 + (X[:,0]-X[:,1])**2 + 0.5
if order[0]==0 and order[1]==0:
return torch.log(temp)
if order[0]==1 and order[1]==0:
return temp**(-1) * (20*(X[:,0]+X[:,1]) + 2*(X[:,0]-X[:,1]))
if order[0]==0 and order[1]==1:
return temp**(-1) * (20*(X[:,0]+X[:,1]) - 2*(X[:,0]-X[:,1]))
if order[0]==2 and order[1]==0:
return - temp**(-2) * (20*(X[:,0]+X[:,1])+2*(X[:,0]-X[:,1])) ** 2 \
+ temp**(-1) * (22)
if order[0]==1 and order[1]==1:
return - temp**(-2) * (20*(X[:,0]+X[:,1])+2*(X[:,0]-X[:,1])) \
* (20*(X[:,0]+X[:,1])-2*(X[:,0]-X[:,1])) \
+ temp**(-1) * (18)
if order[0]==0 and order[1]==2:
return - temp**(-2) * (20*(X[:,0]+X[:,1])-2*(X[:,0]-X[:,1])) ** 2 \
+ temp**(-1) * (22)
if prob==2:
if order[0]==0 and order[1]==0:
return (X[:,0]*X[:,0]*X[:,0]-X[:,0]) * \
0.5*(torch.exp(2*X[:,1])+torch.exp(-2*X[:,1]))
if order[0]==1 and order[1]==0:
return (3*X[:,0]*X[:,0]-1) * \
0.5*(torch.exp(2*X[:,1])+torch.exp(-2*X[:,1]))
if order[0]==0 and order[1]==1:
return (X[:,0]*X[:,0]*X[:,0]-X[:,0]) * \
(torch.exp(2*X[:,1])-torch.exp(-2*X[:,1]))
if order[0]==2 and order[1]==0:
return (6*X[:,0]) * \
0.5*(torch.exp(2*X[:,1])+torch.exp(-2*X[:,1]))
if order[0]==1 and order[1]==1:
return (3*X[:,0]*X[:,0]-1) * \
(torch.exp(2*X[:,1])-torch.exp(-2*X[:,1]))
if order[0]==0 and order[1]==2:
return (X[:,0]*X[:,0]*X[:,0]-X[:,0]) * \
2*(torch.exp(2*X[:,1])+torch.exp(-2*X[:,1]))
if prob==3:
temp1 = X[:,0]*X[:,0] - X[:,1]*X[:,1]
temp2 = X[:,0]*X[:,0] + X[:,1]*X[:,1] + 0.1
if order[0]==0 and order[1]==0:
return temp1 * temp2**(-1)
if order[0]==1 and order[1]==0:
return (2*X[:,0]) * temp2**(-1) + \
temp1 * (-1)*temp2**(-2) * (2*X[:,0])
if order[0]==0 and order[1]==1:
return (-2*X[:,1]) * temp2**(-1) + \
temp1 * (-1)*temp2**(-2) * (2*X[:,1])
if order[0]==2 and order[1]==0:
return (2) * temp2**(-1) + \
2 * (2*X[:,0]) * (-1)*temp2**(-2) * (2*X[:,0]) + \
temp1 * (2)*temp2**(-3) * (2*X[:,0])**2 + \
temp1 * (-1)*temp2**(-2) * (2)
if order[0]==1 and order[1]==1:
return (2*X[:,0]) * (-1)*temp2**(-2) * (2*X[:,1]) + \
(-2*X[:,1]) * (-1)*temp2**(-2) * (2*X[:,0]) + \
temp1 * (2)*temp2**(-3) * (2*X[:,0]) * (2*X[:,1])
if order[0]==0 and order[1]==2:
return (-2) * temp2**(-1) + \
2 * (-2*X[:,1]) * (-1)*temp2**(-2) * (2*X[:,1]) + \
temp1 * (2)*temp2**(-3) * (2*X[:,1])**2 + \
temp1 * (-1)*temp2**(-2) * (2)
def f(prob,X):
return -UU(X,[2,0],prob)- UU(X,[0,2],prob)
class FD():
def __init__(self,bound,hx,prob):
self.prob = prob
self.dim = 2
self.hx = hx
self.nx = [int((bound[0,1] - bound[0,0])/self.hx[0]) + 1,int((bound[1,1] - bound[1,0])/self.hx[1]) + 1]
self.size = self.nx[0]*self.nx[1]
self.X = torch.zeros(self.size,self.dim)
m = 0
for i in range(self.nx[0]):
for j in range(self.nx[1]):
self.X[m,0] = bound[0,0] + i*self.hx[0]
self.X[m,1] = bound[1,0] + j*self.hx[1]
m = m + 1
self.u_acc = UU(self.X,[0,0],prob).view(-1,1)
def matrix(self):
self.A = torch.zeros(self.nx[0]*self.nx[1],self.nx[0]*self.nx[1])
dx = self.hx[0];dy = self.hx[1]
for i in range(self.nx[0]):
for j in range(self.nx[1]):
dx = self.hx[0];dy = self.hx[1]
if i == 0:
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 1
elif i == self.nx[0] - 1:
self.A[i*self.nx[1]+j,(i - 1)*self.nx[1]+j] = -1
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 1
elif j == 0:
self.A[i*self.nx[1]+j,i*self.nx[1]+j + 1] = 1
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = -1
elif j == self.nx[1] - 1:
self.A[i*self.nx[1]+j,i*self.nx[1]+j - 1] = -1
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 1
elif (i > 0 and i < self.nx[0] - 1 and j > 0 and j < self.nx[1] - 1):
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 2*(dx/dy + dy/dx)
self.A[i*self.nx[1]+j,i*self.nx[1]+j-1] = -dx/dy
self.A[i*self.nx[1]+j,i*self.nx[1]+j+1] = -dx/dy
self.A[i*self.nx[1]+j,(i-1)*self.nx[1]+j] = -dy/dx
self.A[i*self.nx[1]+j,(i+1)*self.nx[1]+j] = -dy/dx
return self.A
def right(self):
self.b = torch.zeros(self.nx[0]*self.nx[1],1)
for i in range(self.nx[0]):
for j in range(self.nx[1]):
dx = self.hx[0];dy = self.hx[1]
X = self.X[i*self.nx[1]+j:i*self.nx[1]+j+1,:]
if i == 0:
self.b[i*self.nx[1]+j] = UU(X,[0,0],self.prob)
elif i == self.nx[0] - 1:
self.b[i*self.nx[1]+j] = UU(X,[1,0],self.prob)*dx
elif j == 0:
self.b[i*self.nx[1]+j] = UU(X,[0,1],self.prob)*dy
elif j == self.nx[1] - 1:
self.b[i*self.nx[1]+j] = UU(X,[0,1],self.prob)*dy
elif (i > 0 and i < self.nx[0] - 1 and j > 0 and j < self.nx[1] - 1):
self.b[i*self.nx[1]+j] = f(self.prob,X)*dx*dy
return self.b
def solve(self):
A = self.matrix()
b = self.right()
u,lu = torch.solve(b,A)
return u
def error(u_pred,u_acc):
temp = ((u_pred - u_acc)**2).sum()/(u_acc**2).sum()
return temp**(0.5)
bound = torch.tensor([[0,2],[0,1]]).float()
hx = [0.2,0.1]
prob = 2
fd = FD(bound,hx,prob)
u_pred = fd.solve()
u_acc = fd.u_acc
print(error(u_pred,u_acc))
這個差分法的效果極為不佳。
二階差分近似
這裡需要注意在
u
y
(
x
,
y
0
)
,
u
x
(
x
,
y
N
−
1
)
u_{y}(x,y_{0}),u_{x}(x,y_{N-1})
uy(x,y0),ux(x,yN−1)這兩個地方做二階近似的時候,係數相差一個正負號,自己最好推導一遍。
# -*- coding: utf-8 -*-
"""
Spyder Editor
This is a temporary script file.
"""
import numpy as np
import matplotlib.pyplot as plt
import torch
import time
import torch.nn as nn
def UU(X, order,prob):
if prob==1:
temp = 10*(X[:,0]+X[:,1])**2 + (X[:,0]-X[:,1])**2 + 0.5
if order[0]==0 and order[1]==0:
return torch.log(temp)
if order[0]==1 and order[1]==0:
return temp**(-1) * (20*(X[:,0]+X[:,1]) + 2*(X[:,0]-X[:,1]))
if order[0]==0 and order[1]==1:
return temp**(-1) * (20*(X[:,0]+X[:,1]) - 2*(X[:,0]-X[:,1]))
if order[0]==2 and order[1]==0:
return - temp**(-2) * (20*(X[:,0]+X[:,1])+2*(X[:,0]-X[:,1])) ** 2 \
+ temp**(-1) * (22)
if order[0]==1 and order[1]==1:
return - temp**(-2) * (20*(X[:,0]+X[:,1])+2*(X[:,0]-X[:,1])) \
* (20*(X[:,0]+X[:,1])-2*(X[:,0]-X[:,1])) \
+ temp**(-1) * (18)
if order[0]==0 and order[1]==2:
return - temp**(-2) * (20*(X[:,0]+X[:,1])-2*(X[:,0]-X[:,1])) ** 2 \
+ temp**(-1) * (22)
if prob==2:
if order[0]==0 and order[1]==0:
return (X[:,0]*X[:,0]*X[:,0]-X[:,0]) * \
0.5*(torch.exp(2*X[:,1])+torch.exp(-2*X[:,1]))
if order[0]==1 and order[1]==0:
return (3*X[:,0]*X[:,0]-1) * \
0.5*(torch.exp(2*X[:,1])+torch.exp(-2*X[:,1]))
if order[0]==0 and order[1]==1:
return (X[:,0]*X[:,0]*X[:,0]-X[:,0]) * \
(torch.exp(2*X[:,1])-torch.exp(-2*X[:,1]))
if order[0]==2 and order[1]==0:
return (6*X[:,0]) * \
0.5*(torch.exp(2*X[:,1])+torch.exp(-2*X[:,1]))
if order[0]==1 and order[1]==1:
return (3*X[:,0]*X[:,0]-1) * \
(torch.exp(2*X[:,1])-torch.exp(-2*X[:,1]))
if order[0]==0 and order[1]==2:
return (X[:,0]*X[:,0]*X[:,0]-X[:,0]) * \
2*(torch.exp(2*X[:,1])+torch.exp(-2*X[:,1]))
if prob==3:
temp1 = X[:,0]*X[:,0] - X[:,1]*X[:,1]
temp2 = X[:,0]*X[:,0] + X[:,1]*X[:,1] + 0.1
if order[0]==0 and order[1]==0:
return temp1 * temp2**(-1)
if order[0]==1 and order[1]==0:
return (2*X[:,0]) * temp2**(-1) + \
temp1 * (-1)*temp2**(-2) * (2*X[:,0])
if order[0]==0 and order[1]==1:
return (-2*X[:,1]) * temp2**(-1) + \
temp1 * (-1)*temp2**(-2) * (2*X[:,1])
if order[0]==2 and order[1]==0:
return (2) * temp2**(-1) + \
2 * (2*X[:,0]) * (-1)*temp2**(-2) * (2*X[:,0]) + \
temp1 * (2)*temp2**(-3) * (2*X[:,0])**2 + \
temp1 * (-1)*temp2**(-2) * (2)
if order[0]==1 and order[1]==1:
return (2*X[:,0]) * (-1)*temp2**(-2) * (2*X[:,1]) + \
(-2*X[:,1]) * (-1)*temp2**(-2) * (2*X[:,0]) + \
temp1 * (2)*temp2**(-3) * (2*X[:,0]) * (2*X[:,1])
if order[0]==0 and order[1]==2:
return (-2) * temp2**(-1) + \
2 * (-2*X[:,1]) * (-1)*temp2**(-2) * (2*X[:,1]) + \
temp1 * (2)*temp2**(-3) * (2*X[:,1])**2 + \
temp1 * (-1)*temp2**(-2) * (2)
def f(prob,X):
return -UU(X,[2,0],prob)- UU(X,[0,2],prob)
class FD():
def __init__(self,bound,hx,prob):
self.prob = prob
self.dim = 2
self.hx = hx
self.nx = [int((bound[0,1] - bound[0,0])/self.hx[0]) + 1,int((bound[1,1] - bound[1,0])/self.hx[1]) + 1]
self.size = self.nx[0]*self.nx[1]
self.X = torch.zeros(self.size,self.dim)
m = 0
for i in range(self.nx[0]):
for j in range(self.nx[1]):
self.X[m,0] = bound[0,0] + i*self.hx[0]
self.X[m,1] = bound[1,0] + j*self.hx[1]
m = m + 1
self.u_acc = UU(self.X,[0,0],prob).view(-1,1)
def matrix(self):
self.A = torch.zeros(self.size,self.size)
dx = self.hx[0];dy = self.hx[1]
for i in range(self.nx[0]):
for j in range(self.nx[1]):
if i == 0:
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 1
elif i == self.nx[0] - 1:
self.A[i*self.nx[1]+j,(i - 2)*self.nx[1]+j] = 1
self.A[i*self.nx[1]+j,(i - 1)*self.nx[1]+j] = -4
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 3
elif j == 0:
self.A[i*self.nx[1]+j,i*self.nx[1]+j + 2] = -1
self.A[i*self.nx[1]+j,i*self.nx[1]+j + 1] = 4
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = -3
elif j == self.nx[1] - 1:
self.A[i*self.nx[1]+j,i*self.nx[1]+j - 2] = 1
self.A[i*self.nx[1]+j,i*self.nx[1]+j - 1] = -4
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 3
elif (i > 0 and i < self.nx[0] - 1 and j > 0 and j < self.nx[1] - 1):
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 2*(dx/dy + dy/dx)
self.A[i*self.nx[1]+j,i*self.nx[1]+j-1] = -dx/dy
self.A[i*self.nx[1]+j,i*self.nx[1]+j+1] = -dx/dy
self.A[i*self.nx[1]+j,(i-1)*self.nx[1]+j] = -dy/dx
self.A[i*self.nx[1]+j,(i+1)*self.nx[1]+j] = -dy/dx
return self.A
def right(self):
self.b = torch.zeros(self.size,1)
dx = self.hx[0];dy = self.hx[1]
for i in range(self.nx[0]):
for j in range(self.nx[1]):
X = self.X[i*self.nx[1]+j:i*self.nx[1]+j+1,:]
if i == 0:
self.b[i*self.nx[1]+j] = UU(X,[0,0],self.prob)
#self.b[i*self.nx[1]+j] = UU(X,[1,0],self.prob)*2*dx
elif i == self.nx[0] - 1:
self.b[i*self.nx[1]+j] = UU(X,[1,0],self.prob)*2*dx
elif j == 0:
self.b[i*self.nx[1]+j] = UU(X,[0,1],self.prob)*2*dy
elif j == self.nx[1] - 1:
self.b[i*self.nx[1]+j] = UU(X,[0,1],self.prob)*2*dy
elif (i > 0 and i < self.nx[0] - 1 and j > 0 and j < self.nx[1] - 1):
self.b[i*self.nx[1]+j] = f(self.prob,X)*dx*dy
return self.b
def solve(self):
A = self.matrix()
b = self.right()
u,lu = torch.solve(b,A)
return u
def error(u_pred,u_acc):
temp = ((u_pred - u_acc)**2).sum()/(u_acc**2).sum()
return temp**(0.5)
bound = torch.tensor([[0,2],[0,1]]).float()
hx = [0.2,0.1]
prob = 3
fd = FD(bound,hx,prob)
u_pred = fd.solve()
u_acc = fd.u_acc
print(error(u_pred,u_acc))
3:構造虛擬點
這種近似方法的誤差也是
O
(
h
2
)
O(h^{2})
O(h2),但是構造特別麻煩,在矩形區域的4個頂點上需要和其他Neumann邊界進行重新劃分
import numpy as np
import matplotlib.pyplot as plt
import torch
import time
import torch.nn as nn
def UU(X, order,prob):
if prob==1:
temp = 10*(X[:,0]+X[:,1])**2 + (X[:,0]-X[:,1])**2 + 0.5
if order[0]==0 and order[1]==0:
return torch.log(temp)
if order[0]==1 and order[1]==0:
return temp**(-1) * (20*(X[:,0]+X[:,1]) + 2*(X[:,0]-X[:,1]))
if order[0]==0 and order[1]==1:
return temp**(-1) * (20*(X[:,0]+X[:,1]) - 2*(X[:,0]-X[:,1]))
if order[0]==2 and order[1]==0:
return - temp**(-2) * (20*(X[:,0]+X[:,1])+2*(X[:,0]-X[:,1])) ** 2 \
+ temp**(-1) * (22)
if order[0]==1 and order[1]==1:
return - temp**(-2) * (20*(X[:,0]+X[:,1])+2*(X[:,0]-X[:,1])) \
* (20*(X[:,0]+X[:,1])-2*(X[:,0]-X[:,1])) \
+ temp**(-1) * (18)
if order[0]==0 and order[1]==2:
return - temp**(-2) * (20*(X[:,0]+X[:,1])-2*(X[:,0]-X[:,1])) ** 2 \
+ temp**(-1) * (22)
if prob==2:
if order[0]==0 and order[1]==0:
return (X[:,0]*X[:,0]*X[:,0]-X[:,0]) * \
0.5*(torch.exp(2*X[:,1])+torch.exp(-2*X[:,1]))
if order[0]==1 and order[1]==0:
return (3*X[:,0]*X[:,0]-1) * \
0.5*(torch.exp(2*X[:,1])+torch.exp(-2*X[:,1]))
if order[0]==0 and order[1]==1:
return (X[:,0]*X[:,0]*X[:,0]-X[:,0]) * \
(torch.exp(2*X[:,1])-torch.exp(-2*X[:,1]))
if order[0]==2 and order[1]==0:
return (6*X[:,0]) * \
0.5*(torch.exp(2*X[:,1])+torch.exp(-2*X[:,1]))
if order[0]==1 and order[1]==1:
return (3*X[:,0]*X[:,0]-1) * \
(torch.exp(2*X[:,1])-torch.exp(-2*X[:,1]))
if order[0]==0 and order[1]==2:
return (X[:,0]*X[:,0]*X[:,0]-X[:,0]) * \
2*(torch.exp(2*X[:,1])+torch.exp(-2*X[:,1]))
if prob==3:
temp1 = X[:,0]*X[:,0] - X[:,1]*X[:,1]
temp2 = X[:,0]*X[:,0] + X[:,1]*X[:,1] + 0.1
if order[0]==0 and order[1]==0:
return temp1 * temp2**(-1)
if order[0]==1 and order[1]==0:
return (2*X[:,0]) * temp2**(-1) + \
temp1 * (-1)*temp2**(-2) * (2*X[:,0])
if order[0]==0 and order[1]==1:
return (-2*X[:,1]) * temp2**(-1) + \
temp1 * (-1)*temp2**(-2) * (2*X[:,1])
if order[0]==2 and order[1]==0:
return (2) * temp2**(-1) + \
2 * (2*X[:,0]) * (-1)*temp2**(-2) * (2*X[:,0]) + \
temp1 * (2)*temp2**(-3) * (2*X[:,0])**2 + \
temp1 * (-1)*temp2**(-2) * (2)
if order[0]==1 and order[1]==1:
return (2*X[:,0]) * (-1)*temp2**(-2) * (2*X[:,1]) + \
(-2*X[:,1]) * (-1)*temp2**(-2) * (2*X[:,0]) + \
temp1 * (2)*temp2**(-3) * (2*X[:,0]) * (2*X[:,1])
if order[0]==0 and order[1]==2:
return (-2) * temp2**(-1) + \
2 * (-2*X[:,1]) * (-1)*temp2**(-2) * (2*X[:,1]) + \
temp1 * (2)*temp2**(-3) * (2*X[:,1])**2 + \
temp1 * (-1)*temp2**(-2) * (2)
def f(prob,X):
return -UU(X,[2,0],prob)- UU(X,[0,2],prob)
class FD():
def __init__(self,bound,hx,prob):
self.prob = prob
self.dim = 2
self.hx = hx
self.nx = [int((bound[0,1] - bound[0,0])/self.hx[0]) + 1,int((bound[1,1] - bound[1,0])/self.hx[1]) + 1]
self.size = self.nx[0]*self.nx[1]
self.X = torch.zeros(self.size,self.dim)
m = 0
for i in range(self.nx[0]):
for j in range(self.nx[1]):
self.X[m,0] = bound[0,0] + i*self.hx[0]
self.X[m,1] = bound[1,0] + j*self.hx[1]
m = m + 1
self.u_acc = UU(self.X,[0,0],prob).view(-1,1)
def matrix(self):
self.A = torch.zeros(self.size,self.size)
dx = self.hx[0];dy = self.hx[1]
for i in range(self.nx[0]):
for j in range(self.nx[1]):
if i == 0:
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 1
elif (i == self.nx[0] - 1 and j > 0 and j < self.nx[1] - 1):
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 2*(dx/dy + dy/dx)
self.A[i*self.nx[1]+j,i*self.nx[1]+j-1] = -dx/dy
self.A[i*self.nx[1]+j,i*self.nx[1]+j+1] = -dx/dy
self.A[i*self.nx[1]+j,(i-1)*self.nx[1]+j] = -2*dy/dx
elif (j == 0 and i > 0 and i < self.nx[0] - 1):
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 2*(dx/dy + dy/dx)
self.A[i*self.nx[1]+j,i*self.nx[1]+j+1] = -2*dx/dy
self.A[i*self.nx[1]+j,(i-1)*self.nx[1]+j] = -dy/dx
self.A[i*self.nx[1]+j,(i+1)*self.nx[1]+j] = -dy/dx
elif (j == self.nx[1] - 1 and i > 0 and i < self.nx[0] - 1):
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 2*(dx/dy + dy/dx)
self.A[i*self.nx[1]+j,i*self.nx[1]+j-1] = -2*dx/dy
self.A[i*self.nx[1]+j,(i-1)*self.nx[1]+j] = -dy/dx
self.A[i*self.nx[1]+j,(i+1)*self.nx[1]+j] = -dy/dx
elif (i == self.nx[0] - 1 and j == 0):
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 2*(dx/dy + dy/dx)
self.A[i*self.nx[1]+j,i*self.nx[1]+j+1] = -2*dx/dy
self.A[i*self.nx[1]+j,(i-1)*self.nx[1]+j] = -2*dy/dx
elif (i == self.nx[0] - 1 and j == self.nx[1] - 1):
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 2*(dx/dy + dy/dx)
self.A[i*self.nx[1]+j,i*self.nx[1]+j-1] = -2*dx/dy
self.A[i*self.nx[1]+j,(i-1)*self.nx[1]+j] = -2*dy/dx
elif (i > 0 and i < self.nx[0] - 1 and j > 0 and j < self.nx[1] - 1):
self.A[i*self.nx[1]+j,i*self.nx[1]+j] = 2*(dx/dy + dy/dx)
self.A[i*self.nx[1]+j,i*self.nx[1]+j-1] = -dx/dy
self.A[i*self.nx[1]+j,i*self.nx[1]+j+1] = -dx/dy
self.A[i*self.nx[1]+j,(i-1)*self.nx[1]+j] = -dy/dx
self.A[i*self.nx[1]+j,(i+1)*self.nx[1]+j] = -dy/dx
return self.A
def right(self):
self.b = torch.zeros(self.size,1)
dx = self.hx[0];dy = self.hx[1]
for i in range(self.nx[0]):
for j in range(self.nx[1]):
X = self.X[i*self.nx[1]+j:i*self.nx[1]+j+1,:]
if i == 0:
self.b[i*self.nx[1]+j] = UU(X,[0,0],self.prob)
elif (i == self.nx[0] - 1 and j > 0 and j < self.nx[1] - 1):
self.b[i*self.nx[1]+j] = f(self.prob,X)*dx*dy + UU(X,[1,0],self.prob)*2*dy
elif (j == 0 and i > 0 and i < self.nx[0] - 1):
self.b[i*self.nx[1]+j] = f(self.prob,X)*dx*dy - UU(X,[0,1],self.prob)*2*dx
elif (j == self.nx[1] - 1 and i > 0 and i < self.nx[0] - 1):
self.b[i*self.nx[1]+j] = f(self.prob,X)*dx*dy + UU(X,[0,1],self.prob)*2*dx
elif (i == self.nx[0] - 1 and j == 0):
self.b[i*self.nx[1]+j] = f(self.prob,X)*dx*dy + UU(X,[1,0],self.prob)*2*dy - UU(X,[0,1],self.prob)*2*dx
elif (i == self.nx[0] - 1 and j == self.nx[1] - 1):
self.b[i*self.nx[1]+j] = f(self.prob,X)*dx*dy + UU(X,[1,0],self.prob)*2*dy + UU(X,[0,1],self.prob)*2*dx
elif (i > 0 and i < self.nx[0] - 1 and j > 0 and j < self.nx[1] - 1):
self.b[i*self.nx[1]+j] = f(self.prob,self.X[i*self.nx[1]+j:i*self.nx[1]+j+1,:])*dx*dy
return self.b
def solve(self):
A = self.matrix()
b = self.right()
u,lu = torch.solve(b,A)
return u
def error(u_pred,u_acc):
temp = ((u_pred - u_acc)**2).sum()/(u_acc**2).sum()
return temp**(0.5)
bound = torch.tensor([[0,2],[0,1]]).float()
hx = [0.2,0.1]
prob = 2
fd = FD(bound,hx,prob)
u_pred = fd.solve()
u_acc = fd.u_acc
print(error(u_pred,u_acc))
綜合來看,第三種方法的效果最好。
相關文章
- MySQL 針對 like 條件的優化MySql優化
- C# 針對特定的條件進行鎖操作,不用lock,而是mutexC#Mutex
- 絕對值邊界法
- Python 工匠:編寫條件分支程式碼的技巧Python
- Concurrency(三:競態條件和臨界區)
- 說說你對自我認識邊界的理解
- 條件迴圈語句組成了Python程式碼的骨架Python
- CWE-501: Trust Boundary Violation違反信任邊界的程式碼漏洞缺陷Rust
- 程式碼優化-多型代替IF條件判斷優化多型
- 程式返回條件的0和1
- Mac 上超好用的程式碼對比工具 beyond compare,對比json差異MacJSON
- 使用SSH完成條件及分頁查詢的主要程式碼
- 《超越邊界》
- Golang 針對 MySQL 資料庫表結構的差異 SQL 工具GolangMySql資料庫
- 二分查詢左邊界,右邊界,>=,>,<=,<
- Java ReEntrantLock 之 Condition條件(Java程式碼實戰-002)JavaReentrantLock
- 在平時開發的時候,你有考慮過邊界問題嗎?說說你對邊界的理解!
- Scala與Java差異(二)之條件控制與迴圈Java
- 穿越邊界的姿勢
- oracle 12c 針對cdb的差異0備與對pdb進行恢復Oracle
- 解決多執行緒競爭條件——臨界區執行緒
- 消協開炮:網遊“霸王條款”的邊界到底誰說了算?
- 包教包會!7段程式碼帶你玩轉Python條件語句(附程式碼)Python
- 【AutoCAD .NET】如何在無邊界Hatch上選擇邊界點?
- 針對同一元件內較多不同模組進行元件封裝,實現程式碼優化元件封裝優化
- 強化學習(五)用時序差分法(TD)求解強化學習
- 小程式代理創業成功的五個條件創業
- 【LeetCode回溯演算法#06】復原IP地址詳解(練習如何處理邊界條件,判斷IP合法性)LeetCode演算法
- 針對Office 365的新型網路釣魚詐騙之音訊郵件音訊
- 針對ShotGun的ServerRewindOTGServer
- 關於運營邊界的思考
- YOLOV5 模型和程式碼修改——針對小目標識別YOLO模型
- 前端業務程式碼配置化處理條件判斷邏輯前端
- [程式碼結構設計]根據不同條件使用不同實現類的業務程式碼設計
- 「譯」編寫更好的 JavaScript 條件式和匹配條件的技巧JavaScript
- 針對限定作者、書名均為只讀屬性的程式碼及其疑問
- 微軟澄清表示Win10五月更新32GB儲存條件限制:只是針對新裝置微軟Win10
- shell程式設計之條件語句程式設計