OpenAI 的 Sora、Stability AI 的 Stable Video Diffusion 以及許多其他已經發布或未來將出現的文字生成影片模型,是繼大語言模型 (LLM) 之後 2024 年最流行的 AI 趨勢之一。在這篇部落格中,作者將展示如何將從頭開始構建一個小規模的文字生成影片模型,涵蓋了從理解理論概念、到編寫整個架構再到生成最終結果的所有內容。由於作者沒有大算力的 GPU,所以僅編寫了小規模架構。以下是在不同處理器上訓練模型所需時間的比較。作者表示,在 CPU 上執行顯然需要更長的時間來訓練模型。如果你需要快速測試程式碼中的更改並檢視結果,CPU 不是最佳選擇。因此建議使用 Colab 或 Kaggle 的 T4 GPU 進行更高效、更快速的訓練。我們採用了與傳統機器學習或深度學習模型類似的方法,即在資料集上進行訓練,然後在未見過資料上進行測試。在文字轉影片的背景下,假設有一個包含 10 萬個狗撿球和貓追老鼠影片的訓練資料集,然後訓練模型來生成貓撿球或狗追老鼠的影片。雖然此類訓練資料集在網際網路上很容易獲得,但所需的算力極高。因此,我們將使用由 Python 程式碼生成的移動物件影片資料集。同時使用 GAN(生成對抗網路)架構來建立模型,而不是 OpenAI Sora 使用的擴散模型。我們也嘗試使用擴散模型,但記憶體要求超出了自己的能力。另一方面,GAN 可以更容易、更快地進行訓練和測試。我們將使用 OOP(物件導向程式設計),因此必須對它以及神經網路有基本的瞭解。此外 GAN(生成對抗網路)的知識不是必需的,因為這裡簡單介紹它們的架構。- OOP:https://www.youtube.com/watch?v=q2SGW2VgwAM
- 神經網路理論:https://www.youtube.com/watch?v=Jy4wM2X21u0
- GAN 架構:https://www.youtube.com/watch?v=TpMIssRdhco
- Python 基礎:https://www.youtube.com/watch?v=eWRfhZUzrAc
生成對抗網路是一種深度學習模型,其中兩個神經網路相互競爭:一個從給定的資料集建立新資料(如影像或音樂),另一個則判斷資料是真實的還是虛假的。這個過程一直持續到生成的資料與原始資料無法區分。- 生成影像:GAN 根據文字 prompt 建立逼真的影像或修改現有影像,例如增強解析度或為黑白照片新增顏色。
- 資料增強:GAN 生成合成資料來訓練其他機器學習模型,例如為欺詐檢測系統建立欺詐交易資料。
- 補充缺失資訊:GAN 可以填充缺失資料,例如根據地形圖生成地下影像以用於能源應用。
- 生成 3D 模型:GAN 將 2D 影像轉換為 3D 模型,在醫療保健等領域非常有用,可用於為手術規劃建立逼真的器官影像。
GAN 由兩個深度神經網路組成:生成器和判別器。這兩個網路在對抗設定中一起訓練,其中一個網路生成新資料,另一個網路評估資料是真是假。讓我們以影像到影像的轉換為例,解釋一下 GAN 模型,重點是修改人臉。2. 屬性修改:生成器會修改人臉的屬性,比如給眼睛加上墨鏡。3. 生成影像:生成器會建立一組新增了太陽鏡的影像。4. 判別器的任務:判別器接收到混合的真實影像(帶有太陽鏡的人)和生成的影像(新增了太陽鏡的人臉)。 6. 反饋迴路:如果判別器正確識別出假影像,生成器會調整其引數以生成更逼真的影像。如果生成器成功欺騙了判別器,判別器會更新其引數以提高檢測能力。 透過這一對抗過程,兩個網路都在不斷改進。生成器越來越善於生成逼真的影像,而判別器則越來越善於識別假影像,直到達到平衡,判別器再也無法區分真實影像和生成的影像。此時,GAN 已成功學會生成逼真的修改影像。我們將使用一系列 Python 庫,讓我們匯入它們。# Operating System module for interacting with the operating system
# Module for generating random numbers
# Module for numerical operations
# OpenCV library for image processing
# Python Imaging Library for image processing
from PIL import Image, ImageDraw, ImageFont
# PyTorch library for deep learning
# Dataset class for creating custom datasets in PyTorch
from torch.utils.data import Dataset
# Module for image transformations
import torchvision.transforms as transforms
# Neural network module in PyTorch
# Optimization algorithms in PyTorch
import torch.optim as optim
# Function for padding sequences in PyTorch
from torch.nn.utils.rnn import pad_sequence
# Function for saving images in PyTorch
from torchvision.utils import save_image
# Module for plotting graphs and images
import matplotlib.pyplot as plt
# Module for displaying rich content in IPython environments
from IPython.display import clear_output, display, HTML
# Module for encoding and decoding binary data to text
現在我們已經匯入了所有的庫,下一步就是定義我們的訓練資料,用於訓練 GAN 架構。我們需要至少 10000 個影片作為訓練資料。為什麼呢?因為我測試了較小數量的影片,結果非常糟糕,幾乎沒有任何效果。下一個重要問題是:這些影片內容是什麼? 我們的訓練影片資料集包括一個圓圈以不同方向和不同運動方式移動的影片。讓我們來編寫程式碼並生成 10,000 個影片,看看它的效果如何。# Create a directory named 'training_dataset'
os.makedirs('training_dataset', exist_ok=True)
# Define the number of videos to generate for the dataset
# Define the number of frames per video (1 Second Video)
# Define the size of each image in the dataset
# Define the size of the shapes (Circle)
設定一些基本引數後,接下來我們需要定義訓練資料集的文字 prompt,並據此生成訓練影片。# Define text prompts and corresponding movements for circles
prompts_and_movements = [
("circle moving down", "circle", "down"), # Move circle downward
("circle moving left", "circle", "left"), # Move circle leftward
("circle moving right", "circle", "right"), # Move circle rightward
("circle moving diagonally up-right", "circle", "diagonal_up_right"), # Move circle diagonally up-right
("circle moving diagonally down-left", "circle", "diagonal_down_left"), # Move circle diagonally down-left
("circle moving diagonally up-left", "circle", "diagonal_up_left"), # Move circle diagonally up-left
("circle moving diagonally down-right", "circle", "diagonal_down_right"), # Move circle diagonally down-right
("circle rotating clockwise", "circle", "rotate_clockwise"), # Rotate circle clockwise
("circle rotating counter-clockwise", "circle", "rotate_counter_clockwise"), # Rotate circle counter-clockwise
("circle shrinking", "circle", "shrink"), # Shrink circle
("circle expanding", "circle", "expand"), # Expand circle
("circle bouncing vertically", "circle", "bounce_vertical"), # Bounce circle vertically
("circle bouncing horizontally", "circle", "bounce_horizontal"), # Bounce circle horizontally
("circle zigzagging vertically", "circle", "zigzag_vertical"), # Zigzag circle vertically
("circle zigzagging horizontally", "circle", "zigzag_horizontal"), # Zigzag circle horizontally
("circle moving up-left", "circle", "up_left"), # Move circle up-left
("circle moving down-right", "circle", "down_right"), # Move circle down-right
("circle moving down-left", "circle", "down_left"), # Move circle down-left
我們已經利用這些 prompt 定義了圓的幾個運動軌跡。現在,我們需要編寫一些數學公式,以便根據 prompt 移動圓。# Define function with parameters
def create_image_with_moving_shape(size, frame_num, shape, direction):
# Create a new RGB image with specified size and white background
img = Image.new('RGB', size, color=(255, 255, 255))
# Create a drawing context for the image
draw = ImageDraw.Draw(img)
# Calculate the center coordinates of the image
center_x, center_y = size[0] // 2, size[1] // 2
# Initialize position with center for all movements
position = (center_x, center_y)
# Define a dictionary mapping directions to their respective position adjustments or image transformations
# Adjust position downwards based on frame number
"down": (0, frame_num * 5 % size[1]),
# Adjust position to the left based on frame number
"left": (-frame_num * 5 % size[0], 0),
# Adjust position to the right based on frame number
"right": (frame_num * 5 % size[0], 0),
# Adjust position diagonally up and to the right
"diagonal_up_right": (frame_num * 5 % size[0], -frame_num * 5 % size[1]),
# Adjust position diagonally down and to the left
"diagonal_down_left": (-frame_num * 5 % size[0], frame_num * 5 % size[1]),
# Adjust position diagonally up and to the left
"diagonal_up_left": (-frame_num * 5 % size[0], -frame_num * 5 % size[1]),
# Adjust position diagonally down and to the right
"diagonal_down_right": (frame_num * 5 % size[0], frame_num * 5 % size[1]),
# Rotate the image clockwise based on frame number
"rotate_clockwise": img.rotate(frame_num * 10 % 360, center=(center_x, center_y), fillcolor=(255, 255, 255)),
# Rotate the image counter-clockwise based on frame number
"rotate_counter_clockwise": img.rotate(-frame_num * 10 % 360, center=(center_x, center_y), fillcolor=(255, 255, 255)),
# Adjust position for a bouncing effect vertically
"bounce_vertical": (0, center_y - abs(frame_num * 5 % size[1] - center_y)),
# Adjust position for a bouncing effect horizontally
"bounce_horizontal": (center_x - abs(frame_num * 5 % size[0] - center_x), 0),
# Adjust position for a zigzag effect vertically
"zigzag_vertical": (0, center_y - frame_num * 5 % size[1]) if frame_num % 2 == 0 else (0, center_y + frame_num * 5 % size[1]),
# Adjust position for a zigzag effect horizontally
"zigzag_horizontal": (center_x - frame_num * 5 % size[0], center_y) if frame_num % 2 == 0 else (center_x + frame_num * 5 % size[0], center_y),
# Adjust position upwards and to the right based on frame number
"up_right": (frame_num * 5 % size[0], -frame_num * 5 % size[1]),
# Adjust position upwards and to the left based on frame number
"up_left": (-frame_num * 5 % size[0], -frame_num * 5 % size[1]),
# Adjust position downwards and to the right based on frame number
"down_right": (frame_num * 5 % size[0], frame_num * 5 % size[1]),
# Adjust position downwards and to the left based on frame number
"down_left": (-frame_num * 5 % size[0], frame_num * 5 % size[1])
# Check if direction is in the direction map
if direction in direction_map:
# Check if the direction maps to a position adjustment
if isinstance(direction_map[direction], tuple):
# Update position based on the adjustment
position = tuple(np.add(position, direction_map[direction]))
else: # If the direction maps to an image transformation
# Update the image based on the transformation
img = direction_map[direction]
# Return the image as a numpy array
上述函式用於根據所選方向在每一幀中移動我們的圓。我們只需在其上執行一個迴圈,直至生成所有影片的次數。# Iterate over the number of videos to generate
for i in range(num_videos):
# Randomly choose a prompt and movement from the predefined list
prompt, shape, direction = random.choice(prompts_and_movements)
# Create a directory for the current video
video_dir = f'training_dataset/video_{i}'
os.makedirs(video_dir, exist_ok=True)
# Write the chosen prompt to a text file in the video directory
with open(f'{video_dir}/prompt.txt', 'w') as f:
# Generate frames for the current video
for frame_num in range(frames_per_video):
# Create an image with a moving shape based on the current frame number, shape, and direction
img = create_image_with_moving_shape(img_size, frame_num, shape, direction)
# Save the generated image as a PNG file in the video directory
cv2.imwrite(f'{video_dir}/frame_{frame_num}.png', img)
執行上述程式碼後,就會生成整個訓練資料集。以下是訓練資料集檔案的結構。每個訓練影片資料夾包含其幀以及對應的文字 prompt。讓我們看一下我們的訓練資料集樣本。在我們的訓練資料集中,我們沒有包含圓圈先向上移動然後向右移動的運動。我們將使用這個作為測試 prompt,來評估我們訓練的模型在未見過的資料上的表現。還有一個重要的要點需要注意,我們的訓練資料包含許多物體從場景中移出或部分出現在攝像機前方的樣本,類似於我們在 OpenAI Sora 演示影片中觀察到的情況。 在我們的訓練資料中包含此類樣本的原因是為了測試當圓圈從角落進入場景時,模型是否能夠保持一致性而不會破壞其形狀。現在我們的訓練資料已經生成,需要將訓練影片轉換為張量,這是 PyTorch 等深度學習框架中使用的主要資料型別。此外,透過將資料縮放到較小的範圍,執行歸一化等轉換有助於提高訓練架構的收斂性和穩定性。我們必須為文字轉影片任務編寫一個資料集類,它可以從訓練資料集目錄中讀取影片幀及其相應的文字 prompt,使其可以在 PyTorch 中使用。# Define a dataset class inheriting from torch.utils.data.Dataset
class TextToVideoDataset(Dataset):
def __init__(self, root_dir, transform=None):
# Initialize the dataset with root directory and optional transform
self.transform = transform
# List all subdirectories in the root directory
self.video_dirs = [os.path.join(root_dir, d) for d in os.listdir(root_dir) if os.path.isdir(os.path.join(root_dir, d))]
# Initialize lists to store frame paths and corresponding prompts
# Loop through each video directory
for video_dir in self.video_dirs:
# List all PNG files in the video directory and store their paths
frames = [os.path.join(video_dir, f) for f in os.listdir(video_dir) if f.endswith('.png')]
self.frame_paths.extend(frames)
# Read the prompt text file in the video directory and store its content
with open(os.path.join(video_dir, 'prompt.txt'), 'r') as f:
prompt = f.read().strip()
# Repeat the prompt for each frame in the video and store in prompts list
self.prompts.extend([prompt] * len(frames))
# Return the total number of samples in the dataset
return len(self.frame_paths)
# Retrieve a sample from the dataset given an index
def __getitem__(self, idx):
# Get the path of the frame corresponding to the given index
frame_path = self.frame_paths[idx]
# Open the image using PIL (Python Imaging Library)
image = Image.open(frame_path)
# Get the prompt corresponding to the given index
prompt = self.prompts[idx]
# Apply transformation if specified
image = self.transform(image)
# Return the transformed image and the prompt
在繼續編寫架構程式碼之前,我們需要對訓練資料進行歸一化處理。我們使用 16 的 batch 大小並對資料進行混洗以引入更多隨機性。你可能已經看到,在 Transformer 架構中,起點是將文字輸入轉換為嵌入,從而在多頭注意力中進行進一步處理。類似地,我們在這裡必須編寫一個文字嵌入層。基於該層,GAN 架構訓練在我們的嵌入資料和影像張量上進行。# Define a class for text embedding
class TextEmbedding(nn.Module):
# Constructor method with vocab_size and embed_size parameters
def __init__(self, vocab_size, embed_size):
# Call the superclass constructor
super(TextEmbedding, self).__init__()
# Initialize embedding layer
self.embedding = nn.Embedding(vocab_size, embed_size)
# Define the forward pass method
# Return embedded representation of input
詞彙量將基於我們的訓練資料,在稍後進行計算。嵌入大小將為 10。如果使用更大的資料集,你還可以使用 Hugging Face 上已有的嵌入模型。現在我們已經知道生成器在 GAN 中的作用,接下來讓我們對這一層進行編碼,然後瞭解其內容。class Generator(nn.Module):
def __init__(self, text_embed_size):
super(Generator, self).__init__()
# Fully connected layer that takes noise and text embedding as input
self.fc1 = nn.Linear(100 + text_embed_size, 256 * 8 * 8)
# Transposed convolutional layers to upsample the input
self.deconv1 = nn.ConvTranspose2d(256, 128, 4, 2, 1)
self.deconv2 = nn.ConvTranspose2d(128, 64, 4, 2, 1)
self.deconv3 = nn.ConvTranspose2d(64, 3, 4, 2, 1)
# Output has 3 channels for RGB images
self.relu = nn.ReLU(True)
# ReLU activation function
self.tanh = nn.Tanh()
# Tanh activation function for final output
def forward(self, noise, text_embed):
# Concatenate noise and text embedding along the channel dimension
x = torch.cat((noise, text_embed), dim=1)
# Fully connected layer followed by reshaping to 4D tensor
x = self.fc1(x).view(-1, 256, 8, 8)
# Upsampling through transposed convolution layers with ReLU activation
x = self.relu(self.deconv1(x))
x = self.relu(self.deconv2(x))
# Final layer with Tanh activation to ensure output values are between -1 and 1 (for images)
x = self.tanh(self.deconv3(x))
該 Generator 類負責根據隨機噪聲和文字嵌入的組合建立影片幀,旨在根據給定的文字描述生成逼真的影片幀。該網路從完全連線層 (nn.Linear) 開始,將噪聲向量和文字嵌入組合成單個特徵向量。然後,該向量被重新整形並經過一系列的轉置卷積層 (nn.ConvTranspose2d),這些層將特徵圖逐步上取樣到所需的影片幀大小。這些層使用 ReLU 啟用 (nn.ReLU) 實現非線性,最後一層使用 Tanh 啟用 (nn.Tanh) 將輸出縮放到 [-1, 1] 的範圍。因此,生成器將抽象的高維輸入轉換為以視覺方式表示輸入文字的連貫影片幀。在編寫完生成器層之後,我們需要實現另一半,即判別器部分。class Discriminator(nn.Module):
super(Discriminator, self).__init__()
# Convolutional layers to process input images
self.conv1 = nn.Conv2d(3, 64, 4, 2, 1) # 3 input channels (RGB), 64 output channels, kernel size 4x4, stride 2, padding 1
self.conv2 = nn.Conv2d(64, 128, 4, 2, 1) # 64 input channels, 128 output channels, kernel size 4x4, stride 2, padding 1
self.conv3 = nn.Conv2d(128, 256, 4, 2, 1) # 128 input channels, 256 output channels, kernel size 4x4, stride 2, padding 1
# Fully connected layer for classification
self.fc1 = nn.Linear(256 * 8 * 8, 1) # Input size 256x8x8 (output size of last convolution), output size 1 (binary classification)
self.leaky_relu = nn.LeakyReLU(0.2, inplace=True) # Leaky ReLU activation with negative slope 0.2
self.sigmoid = nn.Sigmoid() # Sigmoid activation for final output (probability)
def forward(self, input):
# Pass input through convolutional layers with LeakyReLU activation
x = self.leaky_relu(self.conv1(input))
x = self.leaky_relu(self.conv2(x))
x = self.leaky_relu(self.conv3(x))
# Flatten the output of convolutional layers
x = x.view(-1, 256 * 8 * 8)
# Pass through fully connected layer with Sigmoid activation for binary classification
x = self.sigmoid(self.fc1(x))
判別器類用作二元分類器,區分真實影片幀和生成的影片幀。目的是評估影片幀的真實性,從而指導生成器產生更真實的輸出。該網路由卷積層 (nn.Conv2d) 組成,這些卷積層從輸入影片幀中提取分層特徵, Leaky ReLU 啟用 (nn.LeakyReLU) 增加非線性,同時允許負值的小梯度。然後,特徵圖被展平並透過完全連線層 (nn.Linear),最終以 S 形啟用 (nn.Sigmoid) 輸出指示幀是真實還是假的機率分數。透過訓練判別器準確地對幀進行分類,生成器同時接受訓練以建立更令人信服的影片幀,從而騙過判別器。我們必須設定用於訓練 GAN 的基礎元件,例如損失函式、最佳化器等。device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Create a simple vocabulary for text prompts
all_prompts = [prompt for prompt, _, _ in prompts_and_movements] # Extract all prompts from prompts_and_movements list
vocab = {word: idx for idx, word in enumerate(set(" ".join(all_prompts).split()))} # Create a vocabulary dictionary where each unique word is assigned an index
vocab_size = len(vocab) # Size of the vocabulary
embed_size = 10 # Size of the text embedding vector
# Encode a given prompt into a tensor of indices using the vocabulary
return torch.tensor([vocab[word] for word in prompt.split()])
# Initialize models, loss function, and optimizers
text_embedding = TextEmbedding(vocab_size, embed_size).to(device) # Initialize TextEmbedding model with vocab_size and embed_size
netG = Generator(embed_size).to(device) # Initialize Generator model with embed_size
netD = Discriminator().to(device) # Initialize Discriminator model
criterion = nn.BCELoss().to(device) # Binary Cross Entropy loss function
optimizerD = optim.Adam(netD.parameters(), lr=0.0002, betas=(0.5, 0.999)) # Adam optimizer for Discriminator
optimizerG = optim.Adam(netG.parameters(), lr=0.0002, betas=(0.5, 0.999)) # Adam optimizer for Generator
這是我們必須轉換程式碼以在 GPU 上執行的部分(如果可用)。我們已經編寫了程式碼來查詢 vocab_size,並且我們正在為生成器和判別器使用 ADAM 最佳化器。你可以選擇自己的最佳化器。在這裡,我們將學習率設定為較小的值 0.0002,嵌入大小為 10,這比其他可供公眾使用的 Hugging Face 模型要小得多。就像其他神經網路一樣,我們將以類似的方式對 GAN 架構訓練進行編碼。
# Iterate over each epoch
for epoch in range(num_epochs):
# Iterate over each batch of data
for i, (data, prompts) in enumerate(dataloader):
# Move real data to device
real_data = data.to(device)
# Convert prompts to list
prompts = [prompt for prompt in prompts]
netD.zero_grad() # Zero the gradients of the Discriminator
batch_size = real_data.size(0) # Get the batch size
labels = torch.ones(batch_size, 1).to(device) # Create labels for real data (ones)
output = netD(real_data) # Forward pass real data through Discriminator
lossD_real = criterion(output, labels) # Calculate loss on real data
lossD_real.backward() # Backward pass to calculate gradients
noise = torch.randn(batch_size, 100).to(device) # Generate random noise
text_embeds = torch.stack([text_embedding(encode_text(prompt).to(device)).mean(dim=0) for prompt in prompts]) # Encode prompts into text embeddings
fake_data = netG(noise, text_embeds) # Generate fake data from noise and text embeddings
labels = torch.zeros(batch_size, 1).to(device) # Create labels for fake data (zeros)
output = netD(fake_data.detach()) # Forward pass fake data through Discriminator (detach to avoid gradients flowing back to Generator)
lossD_fake = criterion(output, labels) # Calculate loss on fake data
lossD_fake.backward() # Backward pass to calculate gradients
optimizerD.step() # Update Discriminator parameters
netG.zero_grad() # Zero the gradients of the Generator
labels = torch.ones(batch_size, 1).to(device) # Create labels for fake data (ones) to fool Discriminator
output = netD(fake_data) # Forward pass fake data (now updated) through Discriminator
lossG = criterion(output, labels) # Calculate loss for Generator based on Discriminator's response
lossG.backward() # Backward pass to calculate gradients
optimizerG.step() # Update Generator parameters
# Print epoch information
print(f"Epoch [{epoch + 1}/{num_epochs}] Loss D: {lossD_real + lossD_fake}, Loss G: {lossG}")
透過反向傳播,我們的損失將針對生成器和判別器進行調整。我們在訓練 loop 中使用了 13 個 epoch。我們測試了不同的值,但如果 epoch 高於這個值,結果並沒有太大差異。此外,過度擬合的風險很高。如果我們的資料集更加多樣化,包含更多動作和形狀,則可以考慮使用更高的 epoch,但在這裡沒有這樣做。當我們執行此程式碼時,它會開始訓練,並在每個 epoch 之後 print 生成器和判別器的損失。
Epoch [1/13] Loss D: 0.8798642754554749, Loss G: 1.300612449645996
Epoch [2/13] Loss D: 0.8235711455345154, Loss G: 1.3729925155639648
Epoch [3/13] Loss D: 0.6098687052726746, Loss G: 1.3266581296920776
訓練完成後,我們需要儲存訓練好的 GAN 架構的判別器和生成器,這隻需兩行程式碼即可實現。# Save the Generator model's state dictionary to a file named 'generator.pth'
torch.save(netG.state_dict(), 'generator.pth')
# Save the Discriminator model's state dictionary to a file named 'discriminator.pth'
torch.save(netD.state_dict(), 'discriminator.pth')
正如我們所討論的,我們在未見過的資料上測試模型的方法與我們訓練資料中涉及狗取球和貓追老鼠的示例類似。因此,我們的測試 prompt 可能涉及貓取球或狗追老鼠等場景。在我們的特定情況下,圓圈向上移動然後向右移動的運動在訓練資料中不存在,因此模型不熟悉這種特定運動。但是,模型已經在其他動作上進行了訓練。我們可以使用此動作作為 prompt 來測試我們訓練過的模型並觀察其效能。# Inference function to generate a video based on a given text promptdef generate_video(text_prompt, num_frames=10): # Create a directory for the generated video frames based on the text prompt os.makedirs(f'generated_video_{text_prompt.replace(" ", "_")}', exist_ok=True) # Encode the text prompt into a text embedding tensor text_embed = text_embedding(encode_text(text_prompt).to(device)).mean(dim=0).unsqueeze(0) # Generate frames for the video for frame_num in range(num_frames): # Generate random noise noise = torch.randn(1, 100).to(device) # Generate a fake frame using the Generator network with torch.no_grad(): fake_frame = netG(noise, text_embed) # Save the generated fake frame as an image file save_image(fake_frame, f'generated_video_{text_prompt.replace(" ", "_")}/frame_{frame_num}.png')# usage of the generate_video function with a specific text promptgenerate_video('circle moving up-right')
當我們執行上述程式碼時,它將生成一個目錄,其中包含我們生成影片的所有幀。我們需要使用一些程式碼將所有這些幀合併為一個短影片。# Define the path to your folder containing the PNG frames
folder_path = 'generated_video_circle_moving_up-right'
# Get the list of all PNG files in the folder
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png')]
# Sort the images by name (assuming they are numbered sequentially)
# Create a list to store the frames
# Read each image and append it to the frames list
for image_file in image_files:
image_path = os.path.join(folder_path, image_file)
frame = cv2.imread(image_path)
# Convert the frames list to a numpy array for easier processing
frames = np.array(frames)
# Define the frame rate (frames per second)
# Create a video writer object
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('generated_video.avi', fourcc, fps, (frames[0].shape[1], frames[0].shape[0]))
# Write each frame to the video
# Release the video writer
確保資料夾路徑指向你新生成的影片所在的位置。執行此程式碼後,你將成功建立 AI 影片。讓我們看看它是什麼樣子。我們進行了多次訓練,訓練次數相同。在兩種情況下,圓圈都是從底部開始,出現一半。好訊息是,我們的模型在兩種情況下都嘗試執行直立運動。例如,在嘗試 1 中,圓圈沿對角線向上移動,然後執行向上運動,而在嘗試 2 中,圓圈沿對角線移動,同時尺寸縮小。在兩種情況下,圓圈都沒有向左移動或完全消失,這是一個好兆頭。最後,作者表示已經測試了該架構的各個方面,發現訓練資料是關鍵。透過在資料集中包含更多動作和形狀,你可以增加可變性並提高模型的效能。由於資料是透過程式碼生成的,因此生成更多樣的資料不會花費太多時間;相反,你可以專注於完善邏輯。此外,文章中討論的 GAN 架構相對簡單。你可以透過整合高階技術或使用語言模型嵌入 (LLM) 而不是基本神經網路嵌入來使其更復雜。此外,調整嵌入大小等引數會顯著影響模型的有效性。原文連結:https://levelup.gitconnected.com/building-an-ai-text-to-video-model-from-scratch-using-python-35b4eb4002de