The Bottom of a Graph
Time Limit: 3000MS Memory Limit: 65536K
Total Submissions: 9759 Accepted: 4053
Description
We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.
Let n be a positive integer, and let p=(e1,…,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,…,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Input
The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,…,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,…,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
Output
For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.
Sample Input
3 3
1 3 2 3 3 1
2 1
1 2
0
Sample Output
1 3
2
Source
Ulm Local 2003
題意:使用的圖論的方式說明了一個新的定義,匯點的定義,v是圖中的一個頂點,對於圖中的每一個頂點w,如果v可達w並且w也可達v,ze稱v為匯點。圖的底部為圖的子集,子集中的所有的點都是匯點,求圖的底部。
思路:如果圖的底部都是匯點,則說明底部中的任意兩點都互相可達,則底部為強連通分量,並且這個集合不與外部相連即從這個集合不能到達其他的集合,所以任務就變成求圖的強連通分量並且出度為零
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <queue>
#include <stack>
#include <set>
#include <vector>
#include <algorithm>
using namespace std;
const int Max = 5010;
typedef struct node
{
int v;
int next;
}Line;
Line Li[Max*1000];
int Head[Max],top;
int dfn[Max],low[Max],pre[Max],dep;
vector<int>G[Max];
int a[Max],num,Du[Max],Num;
bool vis[Max];
stack <int> S;
int n,m;
void AddEdge(int u,int v)
{
Li[top].v = v; Li[top].next = Head[u];
Head[u] = top++;
}
void Tarjan(int u) // Tarjan求強連通分量
{
dfn[u]=low[u]=dep++;
S.push(u);
for(int i=Head[u];i!=-1;i=Li[i].next)
{
if(dfn[Li[i].v]==-1)
{
Tarjan(Li[i].v);
low[u] = min(low[u],low[Li[i].v]);
}
else
{
low[u]=min(low[u],dfn[Li[i].v]);
}
}
if(low[u]==dfn[u])// 如果low[u]=dfn[u],則說明是強連通分的根節點
{
while(!S.empty())
{
int v = S.top();
S.pop();
G[Num].push_back(v);
pre[v]=Num;
if(v==u)
{
break;
}
}
Num++;
}
}
int main()
{
int u, v;
while(~scanf("%d",&n)&&n)
{
scanf("%d",&m);
top = 0;
memset(Head,-1,sizeof(Head));
for(int i=0;i<m;i++)
{
scanf("%d %d",&u,&v);
AddEdge(u,v);
}
memset(dfn,-1,sizeof(dfn));
for(int i=0;i<=n;i++)
{
G[i].clear();
}
dep = 0;Num = 0;
for(int i=1;i<=n;i++)
{
if(dfn[i]==-1)
{
Tarjan(i);
}
}
memset(Du,0,sizeof(Du));
for(int i=0;i<Num;i++)
{
memset(vis,false,sizeof(vis));
for(int k=0;k<G[i].size();k++)
{
for(int j=Head[G[i][k]];j!=-1;j = Li[j].next)
{
if(i != pre[Li[j].v]&&!vis[pre[Li[j].v]])//集合間度的計算
{
vis[pre[Li[j].v]]=true;
Du[i]++;
}
}
}
}
num = 0;
for(int i=0;i<Num;i++)
{
if(Du[i]==0)
{
for(int j=0;j<G[i].size();j++)
{
a[num++]=G[i][j];
}
}
}
sort(a,a+num);// 排序輸出
for(int i=0;i<num;i++)
{
if(i)
{
printf(" ");
}
printf("%d",a[i]);
}
printf("\n");
}
return 0;
}