深入淺出Win32多執行緒程式設計--之綜合例項

Mobidogs發表於2020-04-04
本章我們將以工業控制和嵌入式系統中運用極為廣泛的串列埠通訊為例講述多執行緒的典型應用。

  而網路通訊也是多執行緒應用最廣泛的領域之一,所以本章的最後一節也將對多執行緒網路通訊進行簡短的描述。

  1.串列埠通訊

  在工業控制系統中,工控機(一般都基於PC Windows平臺)經常需要與微控制器通過串列埠進行通訊。因此,操作和使用PC的串列埠成為大多數微控制器、嵌入式系統領域工程師必須具備的能力。

  串列埠的使用需要通過三個步驟來完成的:

  (1) 開啟通訊埠;

  (2) 初始化串列埠,設定波特率、資料位、停止位、奇偶校驗等引數。為了給讀者一個直觀的印象,下圖從Windows的"控制皮膚->系統->裝置管理器->通訊埠(COM1)"開啟COM的設定視窗:



  (3) 讀寫串列埠。

  在WIN32平臺下,對通訊埠進行操作跟基本的檔案操作一樣。

  建立/開啟COM資源

  下列函式如果呼叫成功,則返回一個標識通訊埠的控制程式碼,否則返回-1:

HADLE CreateFile(PCTSTR lpFileName, //通訊埠名,如"COM1"
WORD dwDesiredAccess, //對資源的訪問型別
WORD dwShareMode, //指定共享模式,COM不能共享,該引數為0
PSECURITY_ATTRIBUTES lpSecurityAttributes,
//安全描述符指標,可為NULL
WORD dwCreationDisposition, //建立方式
WORD dwFlagsAndAttributes, //檔案屬性,可為NULL
HANDLE hTemplateFile //模板檔案控制程式碼,置為NULL
);

  獲得/設定COM屬性

  下列函式可以獲得COM口的裝置控制塊,從而獲得相關引數:

BOOL WINAPI GetCommState(
 HANDLE hFile, //標識通訊埠的控制程式碼
 LPDCB lpDCB //指向一個裝置控制塊(DCB結構)的指標
);

  如果要調整通訊埠的引數,則需要重新配置裝置控制塊,再用WIN32 API SetCommState()函式進行設定:

BOOL SetCommState(
 HANDLE hFile, //標識通訊埠的控制程式碼
 LPDCB lpDCB //指向一個裝置控制塊(DCB結構)的指標
);

  DCB結構包含了串列埠的各項引數設定,如下:

typedef struct _DCB
{
 // dcb
 DWORD DCBlength; // sizeof(DCB)
 DWORD BaudRate; // current baud rate
 DWORD fBinary: 1; // binary mode, no EOF check
 DWORD fParity: 1; // enable parity checking
 DWORD fOutxCtsFlow: 1; // CTS output flow control
 DWORD fOutxDsrFlow: 1; // DSR output flow control
 DWORD fDtrControl: 2; // DTR flow control type
 DWORD fDsrSensitivity: 1; // DSR sensitivity
 DWORD fTXContinueOnXoff: 1; // XOFF continues Tx
 DWORD fOutX: 1; // XON/XOFF out flow control
 DWORD fInX: 1; // XON/XOFF in flow control
 DWORD fErrorChar: 1; // enable error replacement
 DWORD fNull: 1; // enable null stripping
 DWORD fRtsControl: 2; // RTS flow control
 DWORD fAbortOnError: 1; // abort reads/writes on error
 DWORD fDummy2: 17; // reserved
 WORD wReserved; // not currently used
 WORD XonLim; // transmit XON threshold
 WORD XoffLim; // transmit XOFF threshold
 BYTE ByteSize; // number of bits/byte, 4-8
 BYTE Parity; // 0-4=no,odd,even,mark,space
 BYTE StopBits; // 0,1,2 = 1, 1.5, 2
 char XonChar; // Tx and Rx XON character
 char XoffChar; // Tx and Rx XOFF character
 char ErrorChar; // error replacement character
 char EofChar; // end of input character
 char EvtChar; // received event character
 WORD wReserved1; // reserved; do not use
} DCB;

  讀寫串列埠

  在讀寫串列埠之前,還要用PurgeComm()函式清空緩衝區,並用SetCommMask ()函式設定事件掩模來監視指定通訊埠上的事件,其原型為:

BOOL SetCommMask(
 HANDLE hFile, //標識通訊埠的控制程式碼
 DWORD dwEvtMask //能夠使能的通訊事件
);

  串列埠上可能發生的事件如下表所示:

事件描述
EV_BREAK A break was detected on input.
EV_CTS The CTS (clear-to-send) signal changed state.
EV_DSR The DSR(data-set-ready) signal changed state.
EV_ERR A line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN, and CE_RXPARITY.
EV_RING A ring indicator was detected.
EV_RLSD The RLSD (receive-line-signal-detect) signal changed state.
EV_RXCHAR A character was received and placed in the input buffer.
EV_RXFLAG The event character was received and placed in the input buffer. The event character is specified in the device's DCB structure, which is applied to a serial port by using the SetCommState function.
EV_TXEMPTY The last character in the output buffer was sent.

  在設定好事件掩模後,我們就可以利用WaitCommEvent()函式來等待串列埠上發生事件,其函式原型為:

BOOL WaitCommEvent(
 HANDLE hFile, //標識通訊埠的控制程式碼
 LPDWORD lpEvtMask, //指向存放事件標識變數的指標
 LPOVERLAPPED lpOverlapped, // 指向overlapped結構
);

  我們可以在發生事件後,根據相應的事件型別,進行串列埠的讀寫操作:

BOOL ReadFile(HANDLE hFile, //標識通訊埠的控制程式碼
 LPVOID lpBuffer, //輸入資料Buffer指標
 DWORD nNumberOfBytesToRead, // 需要讀取的位元組數
 LPDWORD lpNumberOfBytesRead, //實際讀取的位元組數指標
 LPOVERLAPPED lpOverlapped //指向overlapped結構
);
BOOL WriteFile(HANDLE hFile, //標識通訊埠的控制程式碼
 LPCVOID lpBuffer, //輸出資料Buffer指標
 DWORD nNumberOfBytesToWrite, //需要寫的位元組數
 LPDWORD lpNumberOfBytesWritten, //實際寫入的位元組數指標
 LPOVERLAPPED lpOverlapped //指向overlapped結構
);

 

 

2.工程例項

  下面我們用第1節所述API實現一個多執行緒的串列埠通訊程式。這個例子工程(工程名為MultiThreadCom)的介面很簡單,如下圖所示:


  它是一個多執行緒的應用程式,包括兩個工作者執行緒,分別處理串列埠1和串列埠2。為了簡化問題,我們讓連線兩個串列埠的電纜只包含RX、TX兩根連線(即不以硬體控制RS-232,串列埠上只會發生EV_TXEMPTY、EV_RXCHAR事件)。

  在工程例項的BOOL CMultiThreadComApp::InitInstance()函式中,啟動並設定COM1和COM2,其原始碼為:

BOOL CMultiThreadComApp::InitInstance()
{
 AfxEnableControlContainer();
 //開啟並設定COM1
 hComm1=CreateFile("COM1", GENERIC_READ|GENERIC_WRITE, 0, NULL ,OPEN_EXISTING, 0,NULL);
 if (hComm1==(HANDLE)-1)
 {
  AfxMessageBox("開啟COM1失敗");
  return false;
 }
 else
 {
  DCB wdcb;
  GetCommState (hComm1,&wdcb);
  wdcb.BaudRate=9600;
  SetCommState (hComm1,&wdcb);
  PurgeComm(hComm1,PURGE_TXCLEAR);
 }
 //開啟並設定COM2
 hComm2=CreateFile("COM2", GENERIC_READ|GENERIC_WRITE, 0, NULL ,OPEN_EXISTING, 0,NULL);
 if (hComm2==(HANDLE)-1)
 {
  AfxMessageBox("開啟COM2失敗");
  return false;
 }
 else
 {
  DCB wdcb;
  GetCommState (hComm2,&wdcb);
  wdcb.BaudRate=9600;
  SetCommState (hComm2,&wdcb);
  PurgeComm(hComm2,PURGE_TXCLEAR);
 }

 CMultiThreadComDlg dlg;
 m_pMainWnd = &dlg;
 int nResponse = dlg.DoModal();
 if (nResponse == IDOK)
 {
  // TODO: Place code here to handle when the dialog is
  // dismissed with OK
 }
 else if (nResponse == IDCANCEL)
 {
  // TODO: Place code here to handle when the dialog is
  // dismissed with Cancel
 }
 return FALSE;
}

  此後我們在對話方塊CMultiThreadComDlg的初始化函式OnInitDialog中啟動兩個分別處理COM1和COM2的執行緒:

BOOL CMultiThreadComDlg::OnInitDialog()
{
 CDialog::OnInitDialog();
 // Add "About..." menu item to system menu.

 // IDM_ABOUTBOX must be in the system command range.
 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
 ASSERT(IDM_ABOUTBOX < 0xF000);

 CMenu* pSysMenu = GetSystemMenu(FALSE);
 if (pSysMenu != NULL)
 {
  CString strAboutMenu;
  strAboutMenu.LoadString(IDS_ABOUTBOX);
  if (!strAboutMenu.IsEmpty())
  {
   pSysMenu->AppendMenu(MF_SEPARATOR);
   pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
  }
 }

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon

 // TODO: Add extra initialization here
 //啟動串列埠1處理執行緒
 DWORD nThreadId1;
 hCommThread1 = ::CreateThread((LPSECURITY_ATTRIBUTES)NULL, 0,
(LPTHREAD_START_ROUTINE)Com1ThreadProcess, AfxGetMainWnd()->m_hWnd, 0, &nThreadId1);
 if (hCommThread1 == NULL)
 {
  AfxMessageBox("建立串列埠1處理執行緒失敗");
  return false;
 }
 //啟動串列埠2處理執行緒
 DWORD nThreadId2;
 hCommThread2 = ::CreateThread((LPSECURITY_ATTRIBUTES)NULL, 0,
(LPTHREAD_START_ROUTINE)Com2ThreadProcess, AfxGetMainWnd()->m_hWnd, 0, &nThreadId2);
 if (hCommThread2 == NULL)
 {
  AfxMessageBox("建立串列埠2處理執行緒失敗");
  return false;
 }

 return TRUE; // return TRUE unless you set the focus to a control
}

  兩個串列埠COM1和COM2對應的執行緒處理函式等待串列埠上發生事件,並根據事件型別和自身緩衝區是否有資料要傳送進行相應的處理,其原始碼為:

DWORD WINAPI Com1ThreadProcess(HWND hWnd//主視窗控制程式碼)
{
 DWORD wEven;
 char str[10]; //讀入資料
 SetCommMask(hComm1, EV_RXCHAR | EV_TXEMPTY);
 while (TRUE)
 {
  WaitCommEvent(hComm1, &wEven, NULL);
  if(wEven = 0)
  {
   CloseHandle(hCommThread1);
   hCommThread1 = NULL;
   ExitThread(0);
  }
  else
  {
   switch (wEven)
   {
    case EV_TXEMPTY:
     if (wTxPos < wTxLen)
     {
      //在串列埠1寫入資料
      DWORD wCount; //寫入的位元組數
      WriteFile(hComm1, com1Data.TxBuf[wTxPos], 1, &wCount, NULL);
      com1Data.wTxPos++;
     }
     break;
    case EV_RXCHAR:
     if (com1Data.wRxPos < com1Data.wRxLen)
     {
      //讀取串列埠資料, 處理收到的資料
      DWORD wCount; //讀取的位元組數
      ReadFile(hComm1, com1Data.RxBuf[wRxPos], 1, &wCount, NULL);
      com1Data.wRxPos++;
      if(com1Data.wRxPos== com1Data.wRxLen);
       ::PostMessage(hWnd, COM_SENDCHAR, 0, 1);
     }
     break;
    }
   }
  }
 }
 return TRUE;
}

DWORD WINAPI Com2ThreadProcess(HWND hWnd //主視窗控制程式碼)
{
 DWORD wEven;
 char str[10]; //讀入資料
 SetCommMask(hComm2, EV_RXCHAR | EV_TXEMPTY);
 while (TRUE)
 {
  WaitCommEvent(hComm2, &wEven, NULL);
  if (wEven = 0)
  {
   CloseHandle(hCommThread2);
   hCommThread2 = NULL;
   ExitThread(0);
  }
  else
  {
   switch (wEven)
   {
    case EV_TXEMPTY:
     if (wTxPos < wTxLen)
     {
      //在串列埠2寫入資料
      DWORD wCount; //寫入的位元組數
      WriteFile(hComm2, com2Data.TxBuf[wTxPos], 1, &wCount, NULL);
      com2Data.wTxPos++;
     }
     break;
    case EV_RXCHAR:
     if (com2Data.wRxPos < com2Data.wRxLen)
     {
      //讀取串列埠資料, 處理收到的資料
      DWORD wCount; //讀取的位元組數
      ReadFile(hComm2, com2Data.RxBuf[wRxPos], 1, &wCount, NULL);
      com2Data.wRxPos++;
      if(com2Data.wRxPos== com2Data.wRxLen);
       ::PostMessage(hWnd, COM_SENDCHAR, 0, 1);
     }
     break;
    }
   }
  }
  return TRUE;
 }

  執行緒控制函式中所操作的com1Data和com2Data是與串列埠對應的資料結構struct tagSerialPort的例項,這個資料結構是:

typedef struct tagSerialPort
{
 BYTE RxBuf[SPRX_BUFLEN];//接收Buffer
 WORD wRxPos; //當前接收位元組位置
 WORD wRxLen; //要接收的位元組數
 BYTE TxBuf[SPTX_BUFLEN];//傳送Buffer
 WORD wTxPos; //當前傳送位元組位置
 WORD wTxLen; //要傳送的位元組數
}SerialPort, * LPSerialPort;

 

 

3.多執行緒串列埠類

  使用多執行緒串列埠通訊更方便的途徑是編寫一個多執行緒的串列埠類,例如Remon Spekreijse編寫了一個CSerialPort串列埠類。仔細分析這個類的原始碼,將十分有助於我們對先前所學多執行緒及同步知識的理解。

  3.1類的定義

#ifndef __SERIALPORT_H__
#define __SERIALPORT_H__

#define WM_COMM_BREAK_DETECTED WM_USER+1 // A break was detected on input.
#define WM_COMM_CTS_DETECTED WM_USER+2 // The CTS (clear-to-send) signal changed state.
#define WM_COMM_DSR_DETECTED WM_USER+3 // The DSR (data-set-ready) signal changed state.
#define WM_COMM_ERR_DETECTED WM_USER+4 // A line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN, and CE_RXPARITY.
#define WM_COMM_RING_DETECTED WM_USER+5 // A ring indicator was detected.
#define WM_COMM_RLSD_DETECTED WM_USER+6 // The RLSD (receive-line-signal-detect) signal changed state.
#define WM_COMM_RXCHAR WM_USER+7 // A character was received and placed in the input buffer.
#define WM_COMM_RXFLAG_DETECTED WM_USER+8 // The event character was received and placed in the input buffer.
#define WM_COMM_TXEMPTY_DETECTED WM_USER+9 // The last character in the output buffer was sent.

class CSerialPort
{
 public:
  // contruction and destruction
  CSerialPort();
  virtual ~CSerialPort();

  // port initialisation
  BOOL InitPort(CWnd* pPortOwner, UINT portnr = 1, UINT baud = 19200, char parity = 'N', UINT databits = 8, UINT stopsbits = 1, DWORD dwCommEvents = EV_RXCHAR | EV_CTS, UINT nBufferSize = 512);

  // start/stop comm watching
  BOOL StartMonitoring();
  BOOL RestartMonitoring();
  BOOL StopMonitoring();

  DWORD GetWriteBufferSize();
  DWORD GetCommEvents();
  DCB GetDCB();

  void WriteToPort(char* string);

 protected:
  // protected memberfunctions
  void ProcessErrorMessage(char* ErrorText);
  static UINT CommThread(LPVOID pParam);
  static void ReceiveChar(CSerialPort* port, COMSTAT comstat);
  static void WriteChar(CSerialPort* port);

  // thread
  CWinThread* m_Thread;

  // synchronisation objects
  CRITICAL_SECTION m_csCommunicationSync;
  BOOL m_bThreadAlive;

  // handles
  HANDLE m_hShutdownEvent;
  HANDLE m_hComm;
  HANDLE m_hWriteEvent;

  // Event array.
  // One element is used for each event. There are two event handles for each port.
  // A Write event and a receive character event which is located in the overlapped structure (m_ov.hEvent).
  // There is a general shutdown when the port is closed.
  HANDLE m_hEventArray[3];

  // structures
  OVERLAPPED m_ov;
  COMMTIMEOUTS m_CommTimeouts;
  DCB m_dcb;

  // owner window
  CWnd* m_pOwner;

  // misc
  UINT m_nPortNr;
  char* m_szWriteBuffer;
  DWORD m_dwCommEvents;
  DWORD m_nWriteBufferSize;
 };

#endif __SERIALPORT_H__

  3.2類的實現

  3.2.1建構函式與解構函式

  進行相關變數的賦初值及記憶體恢復:

CSerialPort::CSerialPort()
{
 m_hComm = NULL;

 // initialize overlapped structure members to zero
 m_ov.Offset = 0;
 m_ov.OffsetHigh = 0;

 // create events
 m_ov.hEvent = NULL;
 m_hWriteEvent = NULL;
 m_hShutdownEvent = NULL;

 m_szWriteBuffer = NULL;

 m_bThreadAlive = FALSE;
}

//
// Delete dynamic memory
//
CSerialPort::~CSerialPort()
{
 do
 {
  SetEvent(m_hShutdownEvent);
 }
 while (m_bThreadAlive);

 TRACE("Thread ended/n");

 delete []m_szWriteBuffer;
}

  3.2.2核心函式:初始化串列埠

  在初始化串列埠函式中,將開啟串列埠,設定相關引數,並建立串列埠相關的使用者控制事件,初始化臨界區(Critical Section),以成隊的EnterCriticalSection()、LeaveCriticalSection()函式進行資源的排它性訪問:

BOOL CSerialPort::InitPort(CWnd *pPortOwner,
// the owner (CWnd) of the port (receives message)
UINT portnr, // portnumber (1..4)
UINT baud, // baudrate
char parity, // parity
UINT databits, // databits
UINT stopbits, // stopbits
DWORD dwCommEvents, // EV_RXCHAR, EV_CTS etc
UINT writebuffersize) // size to the writebuffer
{
 assert(portnr > 0 && portnr < 5);
 assert(pPortOwner != NULL);

 // if the thread is alive: Kill
 if (m_bThreadAlive)
 {
  do
  {
   SetEvent(m_hShutdownEvent);
  }
  while (m_bThreadAlive);
  TRACE("Thread ended/n");
 }

 // create events
 if (m_ov.hEvent != NULL)
  ResetEvent(m_ov.hEvent);
  m_ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

 if (m_hWriteEvent != NULL)
  ResetEvent(m_hWriteEvent);
  m_hWriteEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

 if (m_hShutdownEvent != NULL)
  ResetEvent(m_hShutdownEvent);
  m_hShutdownEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

 // initialize the event objects
 m_hEventArray[0] = m_hShutdownEvent; // highest priority
 m_hEventArray[1] = m_ov.hEvent;
 m_hEventArray[2] = m_hWriteEvent;

 // initialize critical section
 InitializeCriticalSection(&m_csCommunicationSync);

 // set buffersize for writing and save the owner
 m_pOwner = pPortOwner;

 if (m_szWriteBuffer != NULL)
  delete []m_szWriteBuffer;
  m_szWriteBuffer = new char[writebuffersize];

  m_nPortNr = portnr;

  m_nWriteBufferSize = writebuffersize;
  m_dwCommEvents = dwCommEvents;

  BOOL bResult = FALSE;
  char *szPort = new char[50];
  char *szBaud = new char[50];

  // now it critical!
  EnterCriticalSection(&m_csCommunicationSync);

  // if the port is already opened: close it
 if (m_hComm != NULL)
 {
  CloseHandle(m_hComm);
  m_hComm = NULL;
 }

 // prepare port strings
 sprintf(szPort, "COM%d", portnr);
 sprintf(szBaud, "baud=%d parity=%c data=%d stop=%d", baud, parity, databits,stopbits);

 // get a handle to the port
 m_hComm = CreateFile(szPort, // communication port string (COMX)
  GENERIC_READ | GENERIC_WRITE, // read/write types
  0, // comm devices must be opened with exclusive access
  NULL, // no security attributes
  OPEN_EXISTING, // comm devices must use OPEN_EXISTING
  FILE_FLAG_OVERLAPPED, // Async I/O
  0); // template must be 0 for comm devices

 if (m_hComm == INVALID_HANDLE_VALUE)
 {
  // port not found
  delete []szPort;
  delete []szBaud;
  return FALSE;
 }

 // set the timeout values
 m_CommTimeouts.ReadIntervalTimeout = 1000;
 m_CommTimeouts.ReadTotalTimeoutMultiplier = 1000;
 m_CommTimeouts.ReadTotalTimeoutConstant = 1000;
 m_CommTimeouts.WriteTotalTimeoutMultiplier = 1000;
 m_CommTimeouts.WriteTotalTimeoutConstant = 1000;

 // configure
 if (SetCommTimeouts(m_hComm, &m_CommTimeouts))
 {
  if (SetCommMask(m_hComm, dwCommEvents))
  {
   if (GetCommState(m_hComm, &m_dcb))
   {
    m_dcb.fRtsControl = RTS_CONTROL_ENABLE; // set RTS bit high!
    if (BuildCommDCB(szBaud, &m_dcb))
    {
     if (SetCommState(m_hComm, &m_dcb))
      ;
      // normal operation... continue
     else
      ProcessErrorMessage("SetCommState()");
    }
    else
     ProcessErrorMessage("BuildCommDCB()");
    }
   else
    ProcessErrorMessage("GetCommState()");
  }
  else
   ProcessErrorMessage("SetCommMask()");
 }
 else
  ProcessErrorMessage("SetCommTimeouts()");

 delete []szPort;
 delete []szBaud;

 // flush the port
 PurgeComm(m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);

 // release critical section
 LeaveCriticalSection(&m_csCommunicationSync);

 TRACE("Initialisation for communicationport %d completed./nUse Startmonitor to communicate./n", portnr);

 return TRUE;
}

 

3.3.3核心函式:串列埠執行緒控制函式

  串列埠執行緒處理函式是整個類中最核心的部分,它主要完成兩類工作:

  (1)利用WaitCommEvent函式對串列埠上發生的事件進行獲取並根據事件的不同型別進行相應的處理;

  (2)利用WaitForMultipleObjects函式對串列埠相關的使用者控制事件進行等待並做相應處理。

UINT CSerialPort::CommThread(LPVOID pParam)
{
 // Cast the void pointer passed to the thread back to
 // a pointer of CSerialPort class
 CSerialPort *port = (CSerialPort*)pParam;

 // Set the status variable in the dialog class to
 // TRUE to indicate the thread is running.
 port->m_bThreadAlive = TRUE;

 // Misc. variables
 DWORD BytesTransfered = 0;
 DWORD Event = 0;
 DWORD CommEvent = 0;
 DWORD dwError = 0;
 COMSTAT comstat;
 BOOL bResult = TRUE;

 // Clear comm buffers at startup
 if (port->m_hComm)
  // check if the port is opened
  PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);

  // begin forever loop. This loop will run as long as the thread is alive.
  for (;;)
  {
   // Make a call to WaitCommEvent(). This call will return immediatly
   // because our port was created as an async port (FILE_FLAG_OVERLAPPED
   // and an m_OverlappedStructerlapped structure specified). This call will cause the
   // m_OverlappedStructerlapped element m_OverlappedStruct.hEvent, which is part of the m_hEventArray to
   // be placed in a non-signeled state if there are no bytes available to be read,
   // or to a signeled state if there are bytes available. If this event handle
   // is set to the non-signeled state, it will be set to signeled when a
   // character arrives at the port.

   // we do this for each port!

   bResult = WaitCommEvent(port->m_hComm, &Event, &port->m_ov);

   if (!bResult)
   {
    // If WaitCommEvent() returns FALSE, process the last error to determin
    // the reason..
    switch (dwError = GetLastError())
    {
     case ERROR_IO_PENDING:
     {
      // This is a normal return value if there are no bytes
      // to read at the port.
      // Do nothing and continue
      break;
     }
     case 87:
     {
      // Under Windows NT, this value is returned for some reason.
      // I have not investigated why, but it is also a valid reply
      // Also do nothing and continue.
      break;
     }
     default:
     {
      // All other error codes indicate a serious error has
      // occured. Process this error.
      port->ProcessErrorMessage("WaitCommEvent()");
      break;
     }
    }
   }
   else
   {
    // If WaitCommEvent() returns TRUE, check to be sure there are
    // actually bytes in the buffer to read.
    //
    // If you are reading more than one byte at a time from the buffer
    // (which this program does not do) you will have the situation occur
    // where the first byte to arrive will cause the WaitForMultipleObjects()
    // function to stop waiting. The WaitForMultipleObjects() function
    // resets the event handle in m_OverlappedStruct.hEvent to the non-signelead state
    // as it returns.
    //
    // If in the time between the reset of this event and the call to
    // ReadFile() more bytes arrive, the m_OverlappedStruct.hEvent handle will be set again
    // to the signeled state. When the call to ReadFile() occurs, it will
    // read all of the bytes from the buffer, and the program will
    // loop back around to WaitCommEvent().
    //
    // At this point you will be in the situation where m_OverlappedStruct.hEvent is set,
    // but there are no bytes available to read. If you proceed and call
    // ReadFile(), it will return immediatly due to the async port setup, but
    // GetOverlappedResults() will not return until the next character arrives.
    //
    // It is not desirable for the GetOverlappedResults() function to be in
    // this state. The thread shutdown event (event 0) and the WriteFile()
    // event (Event2) will not work if the thread is blocked by GetOverlappedResults().
    //
    // The solution to this is to check the buffer with a call to ClearCommError().
    // This call will reset the event handle, and if there are no bytes to read
    // we can loop back through WaitCommEvent() again, then proceed.
    // If there are really bytes to read, do nothing and proceed.

    bResult = ClearCommError(port->m_hComm, &dwError, &comstat);

    if (comstat.cbInQue == 0)
     continue;
   } // end if bResult

   // Main wait function. This function will normally block the thread
   // until one of nine events occur that require action.
   Event = WaitForMultipleObjects(3, port->m_hEventArray, FALSE, INFINITE);

   switch (Event)
   {
    case 0:
    {
     // Shutdown event. This is event zero so it will be
     // the higest priority and be serviced first.

     port->m_bThreadAlive = FALSE;

     // Kill this thread. break is not needed, but makes me feel better.
     AfxEndThread(100);
     break;
    }
    case 1:
    // read event
    {
     GetCommMask(port->m_hComm, &CommEvent);
     if (CommEvent &EV_CTS)
      ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_CTS_DETECTED, (WPARAM)0, (LPARAM)port->m_nPortNr);
     if (CommEvent &EV_RXFLAG)
      ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_RXFLAG_DETECTED,(WPARAM)0, (LPARAM)port->m_nPortNr);
     if (CommEvent &EV_BREAK)
      ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_BREAK_DETECTED,(WPARAM)0, (LPARAM)port->m_nPortNr);
     if (CommEvent &EV_ERR)
      ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_ERR_DETECTED, (WPARAM)0, (LPARAM)port->m_nPortNr);
     if (CommEvent &EV_RING)
      ::SendMessage(port->m_pOwner->m_hWnd, WM_COMM_RING_DETECTED,(WPARAM)0, (LPARAM)port->m_nPortNr);
     if (CommEvent &EV_RXCHAR)
      // Receive character event from port.
      ReceiveChar(port, comstat);
    break;
   }
   case 2:
   // write event
   {
    // Write character event from port
    WriteChar(port);
    break;
   }
  } // end switch
 } // close forever loop
 return 0;
}

  下列三個函式用於對串列埠執行緒進行啟動、掛起和恢復:

//
// start comm watching
//
BOOL CSerialPort::StartMonitoring()
{
 if (!(m_Thread = AfxBeginThread(CommThread, this)))
  return FALSE;
 TRACE("Thread started/n");
 return TRUE;
}

//
// Restart the comm thread
//
BOOL CSerialPort::RestartMonitoring()
{
 TRACE("Thread resumed/n");
 m_Thread->ResumeThread();
 return TRUE;
}

//
// Suspend the comm thread
//
BOOL CSerialPort::StopMonitoring()
{
 TRACE("Thread suspended/n");
 m_Thread->SuspendThread();
 return TRUE;
}

  3.3.4讀寫串列埠

  下面一組函式是使用者對串列埠進行讀寫操作的介面:

//
// Write a character.
//
void CSerialPort::WriteChar(CSerialPort *port)
{
 BOOL bWrite = TRUE;
 BOOL bResult = TRUE;

 DWORD BytesSent = 0;

 ResetEvent(port->m_hWriteEvent);

 // Gain ownership of the critical section
 EnterCriticalSection(&port->m_csCommunicationSync);

 if (bWrite)
 {
  // Initailize variables
  port->m_ov.Offset = 0;
  port->m_ov.OffsetHigh = 0;

  // Clear buffer
  PurgeComm(port->m_hComm, PURGE_RXCLEAR | PURGE_TXCLEAR | PURGE_RXABORT | PURGE_TXABORT);

  bResult = WriteFile(port->m_hComm, // Handle to COMM Port
    port->m_szWriteBuffer, // Pointer to message buffer in calling finction
    strlen((char*)port->m_szWriteBuffer), // Length of message to send
    &BytesSent, // Where to store the number of bytes sent
    &port->m_ov); // Overlapped structure

  // deal with any error codes
  if (!bResult)
  {
   DWORD dwError = GetLastError();
   switch (dwError)
   {
    case ERROR_IO_PENDING:
    {
     // continue to GetOverlappedResults()
     BytesSent = 0;
     bWrite = FALSE;
     break;
    }
    default:
    {
     // all other error codes
     port->ProcessErrorMessage("WriteFile()");
    }
   }
  }
  else
  {
   LeaveCriticalSection(&port->m_csCommunicationSync);
  }
 } // end if(bWrite)

 if (!bWrite)
 {
  bWrite = TRUE;

  bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port
   &port->m_ov, // Overlapped structure
   &BytesSent, // Stores number of bytes sent
  TRUE); // Wait flag

  LeaveCriticalSection(&port->m_csCommunicationSync);

  // deal with the error code
  if (!bResult)
  {
   port->ProcessErrorMessage("GetOverlappedResults() in WriteFile()");
  }
 } // end if (!bWrite)

 // Verify that the data size send equals what we tried to send
 if (BytesSent != strlen((char*)port->m_szWriteBuffer))
 {
  TRACE("WARNING: WriteFile() error.. Bytes Sent: %d; Message Length: %d/n",
  BytesSent, strlen((char*)port->m_szWriteBuffer));
 }
}

//
// Character received. Inform the owner
//
void CSerialPort::ReceiveChar(CSerialPort *port, COMSTAT comstat)
{
 BOOL bRead = TRUE;
 BOOL bResult = TRUE;
 DWORD dwError = 0;
 DWORD BytesRead = 0;
 unsigned char RXBuff;

 for (;;)
 {
  // Gain ownership of the comm port critical section.
  // This process guarantees no other part of this program
  // is using the port object.

  EnterCriticalSection(&port->m_csCommunicationSync);

  // ClearCommError() will update the COMSTAT structure and
  // clear any other errors.

  bResult = ClearCommError(port->m_hComm, &dwError, &comstat);

  LeaveCriticalSection(&port->m_csCommunicationSync);

  // start forever loop. I use this type of loop because I
  // do not know at runtime how many loops this will have to
  // run. My solution is to start a forever loop and to
  // break out of it when I have processed all of the
  // data available. Be careful with this approach and
  // be sure your loop will exit.
  // My reasons for this are not as clear in this sample
  // as it is in my production code, but I have found this
  // solutiion to be the most efficient way to do this.

  if (comstat.cbInQue == 0)
  {
   // break out when all bytes have been read
   break;
  }

  EnterCriticalSection(&port->m_csCommunicationSync);

  if (bRead)
  {
   bResult = ReadFile(port->m_hComm, // Handle to COMM port
    &RXBuff, // RX Buffer Pointer
    1, // Read one byte
    &BytesRead, // Stores number of bytes read
    &port->m_ov); // pointer to the m_ov structure
   // deal with the error code
   if (!bResult)
   {
    switch (dwError = GetLastError())
    {
     case ERROR_IO_PENDING:
     {
      // asynchronous i/o is still in progress
      // Proceed on to GetOverlappedResults();
      bRead = FALSE;
      break;
     }
     default:
     {
      // Another error has occured. Process this error.
      port->ProcessErrorMessage("ReadFile()");
      break;
     }
    }
   }
   else
   {
    // ReadFile() returned complete. It is not necessary to call GetOverlappedResults()
    bRead = TRUE;
   }
  } // close if (bRead)

  if (!bRead)
  {
   bRead = TRUE;
   bResult = GetOverlappedResult(port->m_hComm, // Handle to COMM port
    &port->m_ov, // Overlapped structure
    &BytesRead, // Stores number of bytes read
    TRUE); // Wait flag

   // deal with the error code
   if (!bResult)
   {
    port->ProcessErrorMessage("GetOverlappedResults() in ReadFile()");
   }
  } // close if (!bRead)

  LeaveCriticalSection(&port->m_csCommunicationSync);

  // notify parent that a byte was received
  ::SendMessage((port->m_pOwner)->m_hWnd, WM_COMM_RXCHAR, (WPARAM)RXBuff,(LPARAM)port->m_nPortNr);
 } // end forever loop

}

//
// Write a string to the port
//
void CSerialPort::WriteToPort(char *string)
{
 assert(m_hComm != 0);

 memset(m_szWriteBuffer, 0, sizeof(m_szWriteBuffer));
 strcpy(m_szWriteBuffer, string);

 // set event for write
 SetEvent(m_hWriteEvent);
}

//
// Return the output buffer size
//
DWORD CSerialPort::GetWriteBufferSize()
{
 return m_nWriteBufferSize;
}

3.3.5控制介面

  應用程式設計師使用下列一組public函式可以獲取串列埠的DCB及串列埠上發生的事件:

//
// Return the device control block
//
DCB CSerialPort::GetDCB()
{
 return m_dcb;
}

//
// Return the communication event masks
//
DWORD CSerialPort::GetCommEvents()
{
 return m_dwCommEvents;
}

  3.3.6錯誤處理

//
// If there is a error, give the right message
//
void CSerialPort::ProcessErrorMessage(char *ErrorText)
{
 char *Temp = new char[200];

 LPVOID lpMsgBuf;

 FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
  NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
  // Default language
  (LPTSTR) &lpMsgBuf, 0, NULL);

 sprintf(Temp,
  "WARNING: %s Failed with the following error: /n%s/nPort: %d/n", (char*)
  ErrorText, lpMsgBuf, m_nPortNr);
 MessageBox(NULL, Temp, "Application Error", MB_ICONSTOP);

 LocalFree(lpMsgBuf);
 delete []Temp;
}

  仔細分析Remon Spekreijse的CSerialPort類對我們理解多執行緒及其同步機制是大有益處的,從http://codeguru.earthweb.com/network/serialport.shtml我們可以獲取CSerialPort類的介紹與工程例項。另外,電子工業出版社《Visual C++/Turbo C串列埠通訊程式設計實踐》一書的作者龔建偉也編寫了一個使用CSerialPort類的例子,可以從http://www.gjwtech.com/scomm/sc2serialportclass.htm獲得詳情。

  4.多執行緒網路通訊

  在網路通訊中使用多執行緒主要有兩種途徑,即主監控執行緒和執行緒池。

  4.1主監控執行緒

  這種方式指的是程式中使用一個主執行緒監控某特定埠,一旦在這個埠上發生連線請求,則主監控執行緒動態使用CreateThread派生出新的子執行緒處理該請求。主執行緒在派生子執行緒後不再對子執行緒加以控制和排程,而由子執行緒獨自和客戶方發生連線並處理異常。

  使用這種方法的優點是:

  (1)可以較快地實現原型設計,尤其在使用者數目較少、連線保持時間較長時有表現較好;

  (2)主執行緒不與子執行緒發生通訊,在一定程度上減少了系統資源的消耗。

  其缺點是:

  (1)生成和終止子執行緒的開銷比較大;

  (2)對遠端使用者的控制較弱。

  這種多執行緒方式總的特點是"動態生成,靜態排程"。

  4.2執行緒池

  這種方式指的是主執行緒在初始化時靜態地生成一定數量的懸掛子執行緒,放置於執行緒池中。隨後,主執行緒將對這些懸掛子執行緒進行動態排程。一旦客戶發出連線請求,主執行緒將從執行緒池中查詢一個懸掛的子執行緒:

  (1)如果找到,主執行緒將該連線分配給這個被發現的子執行緒。子執行緒從主執行緒處接管該連線,並與使用者通訊。當連線結束時,該子執行緒將自動懸掛,並進人執行緒池等待再次被排程;

  (2)如果當前已沒有可用的子執行緒,主執行緒將通告發起連線的客戶。

  使用這種方法進行設計的優點是:

  (1)主執行緒可以更好地對派生的子執行緒進行控制和排程;

  (2)對遠端使用者的監控和管理能力較強。

  雖然主執行緒對子執行緒的排程要消耗一定的資源,但是與主監控執行緒方式中派生和終止執行緒所要耗費的資源相比,要少很多。因此,使用該種方法設計和實現的系統在客戶端連線和終止變更頻繁時有上佳表現。

  這種多執行緒方式總的特點是"靜態生成,動態排程"。

相關文章