初到掘金,人生地不熟,喜歡的朋友,點個贊鼓勵下新手唄~
參考文章:
https://mp.weixin.qq.com/s/VJif0D5PlrmyA1_emV-k0g
https://mp.weixin.qq.com/s/jU-UHkRbiruBq6BcNOjr5w
下面大量原始碼,請耐心點看~
什麼是Lifecycle?
Lifecycle 元件指的是 android.arch.lifecycle 包下提供的各種類與介面,可以讓開發者構建能感知其他元件(主要指Activity 、Fragment)生命週期(lifecycle-aware)的類。
為什麼要引進Lifecycle?
前面說了,Lifecycle能夠讓開發者構建能感知其他元件(主要指Activity 、Fragment)生命週期(lifecycle-aware)的類。劃重點,讓開發者構建能感知其他元件(主要指Activity 、Fragment)生命週期(lifecycle-aware)的類。在android開發的過程中,我們常常需要讓一些操作能夠感知Activity/Fragment的生命週期,從而實現在活動狀態下允許操作,而在銷燬狀態下需要自動禁止操作,釋放資源,防止記憶體洩露。例如大名鼎鼎的圖片載入框架Glide在Acticiy/Fragment處於前臺的時候載入圖片,而在不可見的狀態下停止圖片的載入,又例如我們希望RxJava的Disposable能夠在Activity/Fragment銷燬是自動dispose。Lifecycle的出現,讓開發者們能夠輕易地實現上述的功能。
一個用Lifecycle改造的MVP例子
- 一般做法構造回撥的方式
先定義基礎IPresent介面:
public interface IPresent {
void onCreate();
void onStart();
void onResume();
void onPause();
void onStop();
void onDestory();
}複製程式碼
然後在自定義的Present中繼承IPresent介面:
public class MyPresent implements IPresent {
private String TAG = "tag";
@Override
public void onCreate() {
LogUtil.i(TAG, "onCreate");
}
@Override
public void onStart() {
LogUtil.i(TAG, "onStart");
}
@Override
public void onResume() {
LogUtil.i(TAG, "onResume");
}
@Override
public void onPause() {
LogUtil.i(TAG, "onPause");
}
@Override
public void onStop() {
LogUtil.i(TAG, "onStop");
}
@Override
public void onDestory() {
LogUtil.i(TAG, "onDestory");
}複製程式碼
最後在Activity依次呼叫回撥方法分發事件:
public class MyActivity extends AppCompatActivity {
protected MyPresent myPresent;
@Override
public void onCreate(@Nullable Bundle savedInstanceState, @Nullable PersistableBundle persistentState) {
super.onCreate(savedInstanceState, persistentState);
myPresent = new MyPresent();
myPresent.onCreate();
}
@Override
protected void onStart() {
super.onStart();
myPresent.onStart();
}
@Override
protected void onResume() {
super.onResume();
myPresent.onResume();
}
@Override
protected void onPause() {
super.onPause();
myPresent.onPause();
}
@Override
protected void onStop() {
super.onStop();
myPresent.onStop();
}
@Override
protected void onDestroy() {
super.onDestroy();
myPresent.onDestory();
}
}複製程式碼
通過這麼一個簡單的例子,我們可以看出,實現流程雖然很簡單,但是程式碼實現繁瑣,不夠靈活,且程式碼侵入性太強。該例子只是展示了Present監聽Activity生命週期,如果說還有類1,類2,類3......想要監聽Activity的生命週期,那麼就要在Activity的回撥中新增對類1,類2,類3.....的回撥。這就引起了一個思考,我們是否能夠實現Activity在生命週期發生變化時主動通知需求方的功能呢?可以的,答案就是Lifecycle。
- Lifecycle實現Present
先實現MyPresent,同時在每一個方法實現上增加@OnLifecycleEvent(Lifecycle.Event.XXXX)註解,OnLifecycleEvent對應了Activity的生命週期方法:
public class MyPresent implements IPresent, LifecycleObserver {
@OnLifecycleEvent(Lifecycle.Event.ON_CREATE)
@Override
public void onCreate() {
LogUtil.i(TAG, "onCreate");
}
@OnLifecycleEvent(Lifecycle.Event.ON_START)
@Override
public void onStart() {
LogUtil.i(TAG, "onStart");
}
@OnLifecycleEvent(Lifecycle.Event.ON_RESUME)
@Override
public void onResume() {
LogUtil.i(TAG, "onResume");
}
@OnLifecycleEvent(Lifecycle.Event.ON_PAUSE)
@Override
public void onPause() {
LogUtil.i(TAG, "onPause");
}
@OnLifecycleEvent(Lifecycle.Event.ON_STOP)
@Override
public void onStop() {
LogUtil.i(TAG, "onStop");
}
@OnLifecycleEvent(Lifecycle.Event.ON_DESTROY)
@Override
public void onDestory() {
LogUtil.i(TAG, "onDestory");
}
}複製程式碼
然後在需要監聽的 Activity 中註冊:
public class MyActivity extends AppCompatActivity {
protected MyPresent myPresent;
@Override
public void onCreate(@Nullable Bundle savedInstanceState, @Nullable PersistableBundle persistentState) {
super.onCreate(savedInstanceState, persistentState);
getLifecycle().addObserver(new MyPresent()); //新增監聽物件
}
}複製程式碼
執行如下:
com.cimu.lifecycle I/MyPresent : onCreate()
com.cimu.lifecycle I/MyPresent : onStart()
com.cimu.lifecycle I/MyPresent : onResume()
com.cimu.lifecycle I/MyPresent : onPause()
com.cimu.lifecycle I/MyPresent : onStop()
com.cimu.lifecycle I/MyPresent : onDestroy()複製程式碼
是不是很簡單,我們希望MyPresent感知監聽Activity的生命週期,只需要在Activity中呼叫一句getLifecycle().addObserver(new MyPresent())就可以了。Lifecycle是怎樣實現感知生命週期進而通知觀察者的功能的呢?
進入原始碼分析了,前方大量眼花繚亂的程式碼~~~
Lifecycle原始碼分析
首先需要知道三個關鍵的東西:
- LifecycleOwner:生命週期的事件分發者,在 Activity/Fragment 他們的生命週期發生變化的時發出相應的 Event 給LifecycleRegistry。
- LifecycleObserver:生命週期的觀察者,通過註解將處理函式與希望監聽的Event繫結,當相應的Event發生時,LifecycleRegistry會通知相應的函式進行處理。
- LifecycleRegistry:控制中心。它負責控制state的轉換、接受分發event事件。
LifeCycle的原始碼分析,我們分為兩個步驟來分析:
- 註冊/登出監聽流程
- 生命週期分發流程
註冊/登出監聽流程原始碼分析
從上面的MVP例子,我們已經知道,註冊只需要呼叫getLifecycle().addObserver(observer)即可,那麼addObserver就可以作為原始碼分析的入口。
通過追蹤,我們發現getLifecycle返回的是SupportActivity中的mLifecycleRegistry,型別為LifecycleRegistry:
public class SupportActivity extends Activity implements LifecycleOwner {
......
private FastSafeIterableMap<LifecycleObserver, ObserverWithState> mObserverMap
= new FastSafeIterableMap<>();
private LifecycleRegistry mLifecycleRegistry = new LifecycleRegistry(this);
......
@Override
public Lifecycle getLifecycle() {
return mLifecycleRegistry;
}
......
}複製程式碼
那麼addObserver實際上是呼叫了LifecycleRegistry的addObserver方法,我們來看一下這個方法:
@Override
public void addObserver(@NonNull LifecycleObserver observer) {
State initialState = mState == DESTROYED ? DESTROYED : INITIALIZED;
//將傳進來的監聽者observer封裝成一個ObserverWithState
ObserverWithState statefulObserver = new ObserverWithState(observer, initialState);
//將封裝好的ObserverWithState存入集合中
ObserverWithState previous = mObserverMap.putIfAbsent(observer, statefulObserver);
if (previous != null) {
return;
}
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
// it is null we should be destroyed. Fallback quickly
return;
}
boolean isReentrance = mAddingObserverCounter != 0 || mHandlingEvent;
State targetState = calculateTargetState(observer);
mAddingObserverCounter++;
while ((statefulObserver.mState.compareTo(targetState) < 0
&& mObserverMap.contains(observer))) {
pushParentState(statefulObserver.mState);
statefulObserver.dispatchEvent(lifecycleOwner, upEvent(statefulObserver.mState));
popParentState();
// 我們 dispatch 了一個事件給觀察者,在回撥觀察者程式碼的時候,觀察者可能會
// 修改我們的狀態
// mState / subling may have been changed recalculate
targetState = calculateTargetState(observer);
}
if (!isReentrance) {
// we do sync only on the top level.
sync();
}
mAddingObserverCounter--;
}複製程式碼
關於註冊流程,上面我們重點關注封裝了observer的ObserverWithState:
static class ObserverWithState {
State mState;
GenericLifecycleObserver mLifecycleObserver;
ObserverWithState(LifecycleObserver observer, State initialState) {
//getCallback()通過不同的型別的observer返回不同GenericLifecycleObserver實現類
mLifecycleObserver = Lifecycling.getCallback(observer);
mState = initialState;
}
//生命週期event的分發,最終會呼叫到這個方法,這個方法中在呼叫了GenericLifecycleObserver的
//的onStateChanged方法
void dispatchEvent(LifecycleOwner owner, Event event) {
State newState = getStateAfter(event);
mState = min(mState, newState);
mLifecycleObserver.onStateChanged(owner, event);
mState = newState;
}
}複製程式碼
public interface GenericLifecycleObserver extends LifecycleObserver {
void onStateChanged(LifecycleOwner source, Lifecycle.Event event);
}複製程式碼
ObserverWithState的構造方法呼叫了Lifecycling.getCallback()將傳入的observer進行解析,生成了對介面類GenericLifecycleObserver的具體實現返回,並且在具體實現類中重寫了onStateChanged方法,在onStateChanged實現了生命週期的分發。當Activity/Fragment的生命週期發生變化時,會遍歷LifecycleRegistry中的mObserverMap集合,取出其中的ObserverWithState節點,呼叫它的onStateChanged方法,而在ObserverWithState的onStateChanged的方法中又呼叫了實現了具體生命週期分發的GenericLifecycleObserver.onStateChanged方法。
在分析Lifecycling.getCallback()方法之前,我們先來看一下Lifecycle使用的三種基本使用方式:
- 第一種使用方式。使用@onLifecycleEvent註解。註解處理器會將該註解解析並動態生成GeneratedAdapter程式碼,這個GeneratedAdapter會把對應的 Lifecycle.Event 封裝為方法呼叫。最終通過GenericLifecycleObserver的onStateChanged方法呼叫生成的GeneratedAdapter的callMechods方法進行事件分發(結合下面例子理解)。
public class MyLifeCycleObserver implements LifeCycleObserver {
@onLifecycleEvent(LifeCycle.Event.ON_CREATE)
public onCreate(LifeCycleOwner owner) {
//doSomething
}
@onLifecycleEvent(LifeCycle.Event.ON_DESTROY)
public onDestroy(LifeCycleOwner owner) {
//doSomething
}
}
public class MainActivity extends AppCompatActivity {
@override
public void onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
getLifecycle().addObserver(new MyLifeCycleObserver());
}
}
複製程式碼
上述的例子中的MyLifeCycleObserver將會在編譯時,生成GeneratedAdapter程式碼如下:
public class MyLifeCycleObserver_LifecycleAdapter implements GeneratedAdapter {
final MyLifeCycleObserver mReceiver;
MyLifeCycleObserver_LifecycleAdapter(MyLifeCycleObserver receiver) {
//mReceiver就是我們開發者傳入的MyLifeCycleObserver
this.mReceiver = receiver;
}
//callMechod方法會被GenericLifecycleObserver的onStateChanged方法呼叫,用以分發生命週期
@Override
public void callMethods(LifecycleOwner owner, Lifecycle.Event event, boolean onAny, MethodCallsLogger logger) {
boolean hasLogger = logger != null;
if (onAny) {
return;
}
//如果生命週期事件是ON_CREATE,那麼呼叫MyLifeCycleObserver的onCreate方法
if (event == Lifecycle.Event.ON_CREATE) {
if (!hasLogger || logger.approveCall("onCreate", 2)) {
mReceiver.onCreate(owner);
}
return;
}
//如果生命週期事件是ON_DESTROY,那麼呼叫MyLifeCycleObserver的onDestroy方法
if (event == Lifecycle.Event.ON_DESTROY) {
if (!hasLogger || logger.approveCall("onDestroy", 2)) {
mReceiver.onDestroy(owner);
}
return;
}
}
}複製程式碼
- 第二種使用方式。直接繼承GenericLifecycleObserver,並實現onStateChange方法
public class MyLifeCycleObserver extends GenericLifeCycleObserver {
@override
void onStateChanged(LifecycleOwner source, Lifecycle.Event event) {
if(event == LifeCycleEvent.Event.ON_CREATE) {
//dosomething
} else if(event == LifeCycleEvent.Event.ON_DESTROY) {
//doSomething
}
}
}
public class MainActivity extends AppCompatActivity {
@override
public void onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
getLifecycle().addObserver(new MyLifeCycleObserver());
}
}複製程式碼
- 第三種使用方式。繼承DefaultLifecycleObserver介面(DefaultLifecycleObserver又繼承自FullLifecycleObserver介面),並實現FullLifecycleObserver介面的onCreate、onStart、onResume、onPause、onStop、onDestroy等對應各自生命週期的方法
class MyLifycycleObserver implements DefaultLifecycleObserver {
@Override
public void onCreate(@NonNull LifecycleOwner owner) {
//doSomething
}
......
@Override
public void onDestroy(@NonNull LifecycleOwner owner) {
//doSomething
}
}
public class MainActivity extends AppCompatActivity {
@override
public void onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)
getLifecycle().addObserver(new MyLifeCycleObserver());
}
}
複製程式碼
上面我們學習了使用Lifecycle的三種基本方法,下面我們簡單看看Lifecycling.getCallback()方法是如何生成GenericLifecycleObserver具體實現類返回的:
//首先,我們先熟悉一下resolveObserverCallbackType這個方法,這個方法在Lifecycling.getCallback()
//中被呼叫,getCallback中會根據它的返回值決定返回什麼型別的GenericLifecycleObserver實現類
private static int resolveObserverCallbackType(Class<?> klass) {
if (klass.getCanonicalName() == null) {
return REFLECTIVE_CALLBACK;
}
//當使用第一種方式註解時,會自動生成程式碼,生成的adapter繼承了GeneratedAdapter,
//所以返回值是GENERATED_CALLBACK
Constructor<? extends GeneratedAdapter> constructor = generatedConstructor(klass);
if (constructor != null) {
sClassToAdapters.put(klass, Collections
.<Constructor<? extends GeneratedAdapter>>singletonList(constructor));
return GENERATED_CALLBACK;
}
//hasLifecycleMethods方法是判斷klass中是否包含了onLifecycleEvent.class註解
//如果包含,返回REFLECTIVE_CALLBACK
boolean hasLifecycleMethods = ClassesInfoCache.sInstance.hasLifecycleMethods(klass);
if (hasLifecycleMethods) {
return REFLECTIVE_CALLBACK;
}
//遞迴呼叫resolveObserverCallbackType方法,遍歷klass的父類
Class<?> superclass = klass.getSuperclass();
List<Constructor<? extends GeneratedAdapter>> adapterConstructors = null;
if (isLifecycleParent(superclass)) {
if (getObserverConstructorType(superclass) == REFLECTIVE_CALLBACK) {
return REFLECTIVE_CALLBACK;
}
adapterConstructors = new ArrayList<>(sClassToAdapters.get(superclass));
}
//遍歷並且遞迴kclass的介面
for (Class<?> intrface : klass.getInterfaces()) {
if (!isLifecycleParent(intrface)) {
continue;
}
if (getObserverConstructorType(intrface) == REFLECTIVE_CALLBACK) {
return REFLECTIVE_CALLBACK;
}
if (adapterConstructors == null) {
adapterConstructors = new ArrayList<>();
}
adapterConstructors.addAll(sClassToAdapters.get(intrface));
}
if (adapterConstructors != null) {
sClassToAdapters.put(klass, adapterConstructors);
return GENERATED_CALLBACK;
}
return REFLECTIVE_CALLBACK;
}複製程式碼
//getCallBack的引數object是我們getLifeCycle().addObserver(observer)時傳入的監聽者observer
static GenericLifecycleObserver getCallback(Object object) {
if (object instanceof FullLifecycleObserver) {
//第三種使用方式,因為DefaultLifecycleObserver繼承與FullLifecycleObserver
return new FullLifecycleObserverAdapter((FullLifecycleObserver) object);
}
if (object instanceof GenericLifecycleObserver) {
//第二種使用方式,當我們使用直接繼承GenericLifecycleObserver這種方法時,直接返回
return (GenericLifecycleObserver) object;
}
final Class<?> klass = object.getClass();
//第一種使用方式,當使用註解時,getObserverConstructorType的返回值是GENERATED_CALLBACK
int type = getObserverConstructorType(klass);
if (type == GENERATED_CALLBACK) {
List<Constructor<? extends GeneratedAdapter>> constructors = sClassToAdapters.get(klass);
if (constructors.size() == 1) {
GeneratedAdapter generatedAdapter = createGeneratedAdapter(constructors.get(0), object);
return new SingleGeneratedAdapterObserver(generatedAdapter);
}
GeneratedAdapter[] adapters = new GeneratedAdapter[constructors.size()];
for (int i = 0; i < constructors.size(); i++) {
adapters[i] = createGeneratedAdapter(constructors.get(i), object);
}
return new CompositeGeneratedAdaptersObserver(adapters);
}
//當oberver都不符合上面幾種型別時,會直接例項化ReflectiveGenericLifecycleObserver
//作為替代返回(一般情況下,是不會走到這裡的,可能是為了應對混淆機制而做的的一種安全模式)
//在ReflectiveGenericLifecycleObserver中會找oberver中的onLifecyleEvent註解,並且將這些帶註解
//的方法生成MethodReference並新增到List<MethodReference>中,作為生命週期分發的呼叫方法
return new ReflectiveGenericLifecycleObserver(object);
}複製程式碼
好了,Lifecycling.getCallback()如果真的要詳細的分析,篇幅會很大,在這裡,我們粗略的分析了下。大家如果想深入瞭解,自己結合原始碼看是最好不過的。
總結一下注冊的流程:
- Acitivty中呼叫LifecycleRegistry的addObserver,傳入一個LifecycleObserver
- 傳入的LifecycleObserver被封裝成一個ObserverWithState存入集合中,當生命週期發生改變的時候,就會遍歷這個ObserverWithState集合,並且呼叫ObserverWithState的dispatchEvent進行分發
- 在ObserverWithState構造方法中,呼叫了Lifecycling.getCallback(observer)生成了具體的 GenericLifecycleObserver物件返回。在ObserverWithState的dispatchEvent()方法中呼叫了GenericLifecycleObserver物件的onStateChanged方法進行事件分發
至於登出流程就很簡單了,直接將observer從集合中remove,程式碼如下:
@Override
public void removeObserver(@NonNull LifecycleObserver observer) {
// we consciously decided not to send destruction events here in opposition to addObserver.
// Our reasons for that:
// 1. These events haven't yet happened at all. In contrast to events in addObservers, that
// actually occurred but earlier.
// 2. There are cases when removeObserver happens as a consequence of some kind of fatal
// event. If removeObserver method sends destruction events, then a clean up routine becomes
// more cumbersome. More specific example of that is: your LifecycleObserver listens for
// a web connection, in the usual routine in OnStop method you report to a server that a
// session has just ended and you close the connection. Now let's assume now that you
// lost an internet and as a result you removed this observer. If you get destruction
// events in removeObserver, you should have a special case in your onStop method that
// checks if your web connection died and you shouldn't try to report anything to a server.
mObserverMap.remove(observer);
}複製程式碼
生命週期的分發流程
我們註冊observer的時候,實際上是呼叫了SupportActivity中的mLifecycleRegistry物件的方法,那麼我們分析下SupportActivity的onCreate方法:
@Override
@SuppressWarnings("RestrictedApi")
protected void onCreate(@Nullable Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
ReportFragment.injectIfNeededIn(this);
}複製程式碼
在onCreate中呼叫了ReportFragment的injectIfNeedIn方法。這個方法其實就是往Activity中新增了一個Fragment。我們知道,Fragment是依附於Activity上的,Fragment的生命週期跟隨Activity的生命週期。既然這個ReportFragment能夠感知Activity的生命週期,那麼它是不是就是負責將生命週期事件分發給LifecycleObserver的呢?
public class ReportFragment extends Fragment {
private static final String REPORT_FRAGMENT_TAG = "android.arch.lifecycle"
+ ".LifecycleDispatcher.report_fragment_tag";
public static void injectIfNeededIn(Activity activity) {
// ProcessLifecycleOwner should always correctly work and some activities may not extend
// FragmentActivity from support lib, so we use framework fragments for activities
android.app.FragmentManager manager = activity.getFragmentManager();
if (manager.findFragmentByTag(REPORT_FRAGMENT_TAG) == null) {
manager.beginTransaction().add(new ReportFragment(), REPORT_FRAGMENT_TAG).commit();
// Hopefully, we are the first to make a transaction.
manager.executePendingTransactions();
}
}
static ReportFragment get(Activity activity) {
return (ReportFragment) activity.getFragmentManager().findFragmentByTag(
REPORT_FRAGMENT_TAG);
}
private ActivityInitializationListener mProcessListener;
private void dispatchCreate(ActivityInitializationListener listener) {
if (listener != null) {
listener.onCreate();
}
}
private void dispatchStart(ActivityInitializationListener listener) {
if (listener != null) {
listener.onStart();
}
}
private void dispatchResume(ActivityInitializationListener listener) {
if (listener != null) {
listener.onResume();
}
}
@Override
public void onActivityCreated(Bundle savedInstanceState) {
super.onActivityCreated(savedInstanceState);
dispatchCreate(mProcessListener);
dispatch(Lifecycle.Event.ON_CREATE);
}
@Override
public void onStart() {
super.onStart();
dispatchStart(mProcessListener);
dispatch(Lifecycle.Event.ON_START);
}
@Override
public void onResume() {
super.onResume();
dispatchResume(mProcessListener);
dispatch(Lifecycle.Event.ON_RESUME);
}
@Override
public void onPause() {
super.onPause();
dispatch(Lifecycle.Event.ON_PAUSE);
}
@Override
public void onStop() {
super.onStop();
dispatch(Lifecycle.Event.ON_STOP);
}
@Override
public void onDestroy() {
super.onDestroy();
dispatch(Lifecycle.Event.ON_DESTROY);
// just want to be sure that we won't leak reference to an activity
mProcessListener = null;
}
private void dispatch(Lifecycle.Event event) {
Activity activity = getActivity();
if (activity instanceof LifecycleRegistryOwner) {
((LifecycleRegistryOwner) activity).getLifecycle().handleLifecycleEvent(event);
return;
}
if (activity instanceof LifecycleOwner) {
Lifecycle lifecycle = ((LifecycleOwner) activity).getLifecycle();
if (lifecycle instanceof LifecycleRegistry) {
((LifecycleRegistry) lifecycle).handleLifecycleEvent(event);
}
}
}
void setProcessListener(ActivityInitializationListener processListener) {
mProcessListener = processListener;
}
interface ActivityInitializationListener {
void onCreate();
void onStart();
void onResume();
}
}複製程式碼
ReportFragment的程式碼很好理解,我們能夠在程式碼裡面發現Lifecycle.Event.xxx事件,並且在它的生命週期回撥方法中將Lifecycle.Event.xxx事件傳給了dispatch方法,很明顯是用來分發生命週期的。在ReportFragment的dispatch方法中,呼叫了LifecycleRegistry的handleLifecycleEvent方法:
public void handleLifecycleEvent(@NonNull Lifecycle.Event event) {
State next = getStateAfter(event);
moveToState(next);
}複製程式碼
在分析這個方法之前,我們先要了解Lifecycle的事件與狀態:
public abstract class Lifecycle {
public enum Event {
/**
* Constant for onCreate event of the {@link LifecycleOwner}.
*/
ON_CREATE,
/**
* Constant for onStart event of the {@link LifecycleOwner}.
*/
ON_START,
/**
* Constant for onResume event of the {@link LifecycleOwner}.
*/
ON_RESUME,
/**
* Constant for onPause event of the {@link LifecycleOwner}.
*/
ON_PAUSE,
/**
* Constant for onStop event of the {@link LifecycleOwner}.
*/
ON_STOP,
/**
* Constant for onDestroy event of the {@link LifecycleOwner}.
*/
ON_DESTROY,
/**
* An {@link Event Event} constant that can be used to match all events.
*/
ON_ANY
}
public enum State {
/**
* Destroyed state for a LifecycleOwner. After this event, this Lifecycle will not dispatch
* any more events. For instance, for an {@link android.app.Activity}, this state is reached
* <b>right before</b> Activity's {@link android.app.Activity#onDestroy() onDestroy} call.
*/
DESTROYED,
/**
* Initialized state for a LifecycleOwner. For an {@link android.app.Activity}, this is
* the state when it is constructed but has not received
* {@link android.app.Activity#onCreate(android.os.Bundle) onCreate} yet.
*/
INITIALIZED,
/**
* Created state for a LifecycleOwner. For an {@link android.app.Activity}, this state
* is reached in two cases:
* <ul>
* <li>after {@link android.app.Activity#onCreate(android.os.Bundle) onCreate} call;
* <li><b>right before</b> {@link android.app.Activity#onStop() onStop} call.
* </ul>
*/
CREATED,
/**
* Started state for a LifecycleOwner. For an {@link android.app.Activity}, this state
* is reached in two cases:
* <ul>
* <li>after {@link android.app.Activity#onStart() onStart} call;
* <li><b>right before</b> {@link android.app.Activity#onPause() onPause} call.
* </ul>
*/
STARTED,
/**
* Resumed state for a LifecycleOwner. For an {@link android.app.Activity}, this state
* is reached after {@link android.app.Activity#onResume() onResume} is called.
*/
RESUMED;
}
}複製程式碼
Lifecycle.Event對應activity的各個宣告週期,Lifecycle.State則是Lifecycle的狀態。在LifecycleRegistry 中定義了狀態間的轉化關係:
public class LifecycleRegistry extends Lifecycle {
static State getStateAfter(Event event) {
switch (event) {
case ON_CREATE:
case ON_STOP:
return CREATED;
case ON_START:
case ON_PAUSE:
return STARTED;
case ON_RESUME:
return RESUMED;
case ON_DESTROY:
return DESTROYED;
case ON_ANY:
break;
}
throw new IllegalArgumentException("Unexpected event value " + event);
}
private static Event downEvent(State state) {
switch (state) {
case INITIALIZED:
throw new IllegalArgumentException();
case CREATED:
return ON_DESTROY;
case STARTED:
return ON_STOP;
case RESUMED:
return ON_PAUSE;
case DESTROYED:
throw new IllegalArgumentException();
}
throw new IllegalArgumentException("Unexpected state value " + state);
}
private static Event upEvent(State state) {
switch (state) {
case INITIALIZED:
case DESTROYED:
return ON_CREATE;
case CREATED:
return ON_START;
case STARTED:
return ON_RESUME;
case RESUMED:
throw new IllegalArgumentException();
}
throw new IllegalArgumentException("Unexpected state value " + state);
}
}複製程式碼
這三個方法,可以總結為下面這樣一張圖:
downEvent 在圖中表示從一個狀態到他下面的那個狀態,upEvent 則是往上。
瞭解了 Lifecycle 的狀態後,我們繼續來看 LifecycleRegistry。上面我們知道,當Activity的生命週期發生變化後,ReportFragment會感知到,從而會呼叫到dispatch方法,最終呼叫到LifecycleRegistry的 handleLifecycleEvent方法:
public class LifecycleRegistry extends Lifecycle {
private int mAddingObserverCounter = 0;
private boolean mHandlingEvent = false;
private boolean mNewEventOccurred = false;
public void handleLifecycleEvent(@NonNull Lifecycle.Event event) {
State next = getStateAfter(event);
moveToState(next);
}
private void moveToState(State next) {
if (mState == next) {
return;
}
mState = next;
// 當我們在 LifecycleRegistry 回撥 LifecycleObserver 的時候觸發狀態變化時,
// mHandlingEvent 為 true;
// 新增 observer 的時候,也可能會執行回撥方法,這時候如果觸發了狀態變化,
// 則 mAddingObserverCounter != 0
if (mHandlingEvent || mAddingObserverCounter != 0) {
mNewEventOccurred = true;
// 不需要執行 sync。
// 執行到這裡的情況是:sync() -> LifecycleObserver -> moveToState()
// 這裡直接返回後,還是會回到 sync(),然後繼續同步狀態給 observer
// we will figure out what to do on upper level.
return;
}
mHandlingEvent = true;
// sync() 會把狀態的變化轉化為生命週期事件,然後轉發給 LifecycleObserver
sync();
mHandlingEvent = false;
}
}複製程式碼
LifecycleRegistry 本來要做的事其實是很簡單的,但由於他需要執行客戶的程式碼,由此引入了很多額外的複雜度。原因是,客戶程式碼並不處在我們的控制之下,他們可能做出任何可以做到的事。例如這裡,在回撥中又觸發狀態變化。類似的情況是,在持有鎖的時候不呼叫客戶程式碼,這個也會讓實現變得比較複雜。
接下來我們看 sync():
public class LifecycleRegistry extends Lifecycle {
/**
* Custom list that keeps observers and can handle removals / additions during traversal.
*
* 這個 Invariant 非常重要,他會影響到 sync() 的邏輯
* Invariant: at any moment of time for observer1 & observer2:
* if addition_order(observer1) < addition_order(observer2), then
* state(observer1) >= state(observer2),
*/
private FastSafeIterableMap<LifecycleObserver, ObserverWithState> mObserverMap =
new FastSafeIterableMap<>();
private void sync() {
LifecycleOwner lifecycleOwner = mLifecycleOwner.get();
if (lifecycleOwner == null) {
Log.w(LOG_TAG, "LifecycleOwner is garbage collected, you shouldn't try dispatch "
+ "new events from it.");
return;
}
while (!isSynced()) {
// mNewEventOccurred 是為了在 observer 觸發狀態變化時讓 backwardPass/forwardPass()
// 提前返回用的。我們剛準備調他們,這裡設定為 false 即可。
mNewEventOccurred = false;
// no need to check eldest for nullability, because isSynced does it for us.
if (mState.compareTo(mObserverMap.eldest().getValue().mState) < 0) {
// mObserverMap 裡的元素的狀態是非遞增排列的,也就是說,隊頭的 state 最大
// 如果 mState 小於佇列裡最大的那個,說明有元素需要更新狀態
// 為了維持 mObserverMap 的 Invariant,這裡我們需要從隊尾往前更新元素的狀態
backwardPass(lifecycleOwner);
}
Entry<LifecycleObserver, ObserverWithState> newest = mObserverMap.newest();
// 如果 mNewEventOccurred,說明在上面呼叫 backwardPass() 時,客戶觸發了狀態修改
if (!mNewEventOccurred && newest != null
&& mState.compareTo(newest.getValue().mState) > 0) {
forwardPass(lifecycleOwner);
}
}
mNewEventOccurred = false;
}
// 判斷是否需要同步,如果所有的observer的狀態都已經同步完,返回 true,否則返回false
private boolean isSynced() {
if (mObserverMap.size() == 0) {
return true;
}
//eldestObserverState是最早新增的observer,newestObserverState是最新新增的observer
State eldestObserverState = mObserverMap.eldest().getValue().mState;
State newestObserverState = mObserverMap.newest().getValue().mState;
//因為我們保證隊頭的state >= 後面的元素的state,所以只要判斷頭尾就夠了
//如果最新的和最老的Observer的狀態不一致或者當前的狀態和最新的狀態不一致時,那麼需要進行狀態同步
return eldestObserverState == newestObserverState && mState == newestObserverState;
}
}複製程式碼
sync() 的主要作用就是根據把 mObserverMap 裡所有元素的狀態都同步為 mState。我們繼續看剩下的 backwardPass/forwardPass:
public class LifecycleRegistry extends Lifecycle {
// 這段註釋應該是這整個類裡面最難理解的了吧,至少對於我來說是這樣
// we have to keep it for cases:
// void onStart() {
// // removeObserver(this),說明 this 是一個 LifecycleObserver
// // 所以這裡說的是,我們在回撥裡執行了下面兩個操作
// mRegistry.removeObserver(this);
// mRegistry.add(newObserver);
// }
// 假定現在我們要從 CREATED 轉到 STARTED 狀態(也就是說,mState 現在是 STARTED)。
// 這種情況下,只有將新的 observer 設定為 CREATED 狀態,它的 onStart 才會被呼叫
// 為了得到這個 CREATED,在這裡才引入了 mParentStates。在 forwardPass 中執行
// pushParentState(observer.mState) 時,observer.mState 就是我們需要的 CREATED。
// backwardPass 的情況類似。
// newObserver should be brought only to CREATED state during the execution of
// this onStart method. our invariant with mObserverMap doesn't help, because parent observer
// is no longer in the map.
private ArrayList<State> mParentStates = new ArrayList<>();
//第一個while循壞遍歷我們儲存觀察者的集合,
//第二個是要處理各個狀態經過的event
private void forwardPass(LifecycleOwner lifecycleOwner) {
// 從隊頭開始迭代
Iterator<Entry<LifecycleObserver, ObserverWithState>> ascendingIterator =
mObserverMap.iteratorWithAdditions();
while (ascendingIterator.hasNext() && !mNewEventOccurred) {
Entry<LifecycleObserver, ObserverWithState> entry = ascendingIterator.next();
ObserverWithState observer = entry.getValue();
while ((observer.mState.compareTo(mState) < 0 && !mNewEventOccurred
// 可能在回撥客戶程式碼的時候,客戶把自己移除了
&& mObserverMap.contains(entry.getKey()))) {
pushParentState(observer.mState);
//upEvent 返回所要經歷的event
//例如:當前是 STARTED , 那麼他的經過的 events 就是 ON_RESUME
observer.dispatchEvent(lifecycleOwner, upEvent(observer.mState));
popParentState();
}
}
}
private void backwardPass(LifecycleOwner lifecycleOwner) {
// 從隊尾開始迭代
Iterator<Entry<LifecycleObserver, ObserverWithState>> descendingIterator =
mObserverMap.descendingIterator();
while (descendingIterator.hasNext() && !mNewEventOccurred) {
Entry<LifecycleObserver, ObserverWithState> entry = descendingIterator.next();
ObserverWithState observer = entry.getValue();
while ((observer.mState.compareTo(mState) > 0 && !mNewEventOccurred
&& mObserverMap.contains(entry.getKey()))) {
Event event = downEvent(observer.mState);
pushParentState(getStateAfter(event));
observer.dispatchEvent(lifecycleOwner, event);
popParentState();
}
}
}
private void popParentState() {
mParentStates.remove(mParentStates.size() - 1);
}
private void pushParentState(State state) {
mParentStates.add(state);
}
}複製程式碼
提示:在看這forwardPass以及backwardPass這兩個方法時,參考上面的狀態轉換圖
- 假設當前集合中所有
ObserverWithState
元素都處於CREATED
狀態。此時接著收到了一個ON_START
事件,從圖可以看出,接下來應該是要轉換到STARTED
狀態。由於STARTED
大於CREATED
,所以會執行forwardPass
方法。forwardPass
裡呼叫upEvent(observer.mState)
,返回從CREATED
往上到STARTED
需要傳送的事件,也就是ON_START
,於是ON_START
事件傳送給了觀察者。 - 假設當前
LifecycleRegistry
的mState
處於RESUMED
狀態。然後呼叫addObserver
方法新新增一個LifecycleObserver
,該observer會被封裝成ObserverWithState
存進集合中,此時這個新的ObserverWithState
處於INITIALIZED
狀態,由於RESUMED
大於INITIALIZED
,所以會執行forwardPass
方法。ObserverWithState
的狀態會按照INITIALIZED -> CREATED -> STARTED -> RESUMED
這樣的順序變遷。
總結
一些個人疑問:
- 疑點1:為什麼不直接在SupportActivity的生命週期函式中給Lifecycle分發生命週期事件,而是要加一個Fragment呢?
因為不是所有的頁面都繼承AppCompatActivity,為了相容非AppCompatActivity,所以封裝一個同樣具有生命週期的Fragment來給Lifecycle分發生命週期事件。顯然Fragment 侵入性低。
- 疑點2:為什麼用ReportFragment分發生命週期而不直接使用ActivityLifecycleCallbacks的回撥來處理Lifecycle生命週期的變化?
由於 ActivityLifecycleCallbacks 的回撥比 Fragment 和 Activity 還要早,實際上未真正執行對應的生命週期方法
Lifecycle的分析我們在這裡就到此為止了,最後附上幅流程圖,幫助理解並記憶:
初到掘金,人生地不熟,喜歡的朋友,點個贊鼓勵下新手唄~