[雪峰磁針石部落格]計算機視覺opcencv工具深度學習快速實戰1人臉識別
使用OpenCV提供的預先訓練的深度學習面部檢測器模型,可快速,準確的進行人臉識別。
2017年8月OpenCV 3.3正式釋出,帶來了高改進的“深度神經網路”(dnn deep neural networks)模組。該模組支援許多深度學習框架,包括Caffe,TensorFlow和Torch / PyTorch。
基於Caffe的面部檢測器在這裡。
需要兩組檔案:
- 定義模型體系結構的.prototxt檔案
- .caffemodel檔案,包含實際圖層的權重
權重檔案不包含在OpenCV示例目錄。
OpenCV深度學習面部檢測器如何工作?
# 模型下載:https://itbooks.pipipan.com/fs/18113597-320346529
# 程式碼存放:https://github.com/china-testing/python-api-tesing/tree/master/opencv_crash_deep_learning
# 技術支援qq群144081101(程式碼和模型存放)
# USAGE
# python detect_faces.py --image rooster.jpg --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel
# import the necessary packages
import numpy as np
import argparse
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image")
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe `deploy` prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# load the input image and construct an input blob for the image
# by resizing to a fixed 300x300 pixels and then normalizing it
image = cv2.imread(args["image"])
(h, w) = image.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0,
(300, 300), (104.0, 177.0, 123.0))
# pass the blob through the network and obtain the detections and
# predictions
print("[INFO] computing object detections...")
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the
# prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence > args["confidence"]:
# compute the (x, y)-coordinates of the bounding box for the
# object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the bounding box of the face along with the associated
# probability
text = "{:.2f}%".format(confidence * 100)
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(image, (startX, startY), (endX, endY),
(0, 0, 255), 2)
cv2.putText(image, text, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
# show the output image
cv2.imshow("Output", image)
cv2.waitKey(0)
執行:
$ python detect_faces.py --image rooster.jpg --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel
上面的面部有74.30%的置信度。 儘管OpenCV的Haar級聯因缺少“直接”角度的面孔,但通過使用OpenCV的深度學習面部探測器,依然能夠測到臉部。
再來看三個面孔的示例:
python detect_faces.py --image iron_chic.jpg --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel
視訊,視訊流和網路攝像頭應用人臉檢測
# USAGE
# python detect_faces_video.py --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel
# import the necessary packages
from imutils.video import VideoStream
import numpy as np
import argparse
import imutils
import time
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe `deploy` prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# initialize the video stream and allow the cammera sensor to warmup
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
frame = vs.read()
frame = imutils.resize(frame, width=400)
# grab the frame dimensions and convert it to a blob
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,
(300, 300), (104.0, 177.0, 123.0))
# pass the blob through the network and obtain the detections and
# predictions
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the
# prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence < args["confidence"]:
continue
# compute the (x, y)-coordinates of the bounding box for the
# object
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the bounding box of the face along with the associated
# probability
text = "{:.2f}%".format(confidence * 100)
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(frame, (startX, startY), (endX, endY),
(0, 0, 255), 2)
cv2.putText(frame, text, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
執行:
python detect_faces_video.py --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel
參考資料
- 本文最新版本地址
- 本文涉及的python測試開發庫 謝謝點贊!
- 本文相關海量書籍下載
- 2018最佳人工智慧機器學習工具書及下載(持續更新)
- 模型下載:https://itbooks.pipipan.com/fs/18113597-320346529
其他python人臉識別庫介紹
python庫介紹-face_recognition 人臉識別
可以命令識別人臉框。
$ face_detection --model cnn iron_chic.jpg
iron_chic.jpg,79,422,243,258
iron_chic.jpg,146,272,310,108
iron_chic.jpg,194,144,330,7
相關文章
- [雪峰磁針石部落格]計算機視覺opcencv工具深度學習快速實戰2opencv快速入門計算機視覺深度學習OpenCV
- [雪峰磁針石部落格]python計算機視覺深度學習1簡介Python計算機視覺深度學習
- [雪峰磁針石部落格]python計算機視覺深度學習2影像基礎Python計算機視覺深度學習
- [雪峰磁針石部落格]tesseractOCR識別工具及pytesseract
- [雪峰磁針石部落格]Bokeh資料視覺化工具1快速入門視覺化
- [雪峰磁針石部落格]multi-mechanize效能測試工具
- [雪峰磁針石部落格]2019-Python最佳資料科學工具庫Python資料科學
- [雪峰磁針石部落格]2018最佳ssh免費登陸工具
- [雪峰磁針石部落格]pythontkinter圖形工具樣式作業Python
- [雪峰磁針石部落格]python應用效能監控工具簡介Python
- [雪峰磁針石部落格]pythonGUI工具書籍下載-持續更新PythonNGUI
- [雪峰磁針石部落格]介面測試面試題面試題
- [雪峰磁針石部落格]資料倉儲快速入門教程1簡介
- [雪峰磁針石部落格]python包管理工具:Conda和pip比較Python
- [雪峰磁針石部落格]資料分析工具pandas快速入門教程4-資料匯聚
- [雪峰磁針石部落格]2018最佳python編輯器和IDEPythonIDE
- [雪峰磁針石部落格]軟體自動化測試初學者忠告
- [雪峰磁針石部落格]可愛的python測試開發庫Python
- [雪峰磁針石部落格]大資料Hadoop工具python教程9-Luigi工作流大資料HadoopPythonUI
- [雪峰磁針石部落格]python爬蟲cookbook1爬蟲入門Python爬蟲
- iOS計算機視覺—人臉識別iOS計算機視覺
- [雪峰磁針石部落格]web開發工具flask中文英文書籍下載-持續更新WebFlask
- [雪峰磁針石部落格]軟體測試專家工具包1web測試Web
- [雪峰磁針石部落格]selenium自動化測試工具python筆試面試專案實戰5鍵盤操作Python筆試面試
- [雪峰磁針石部落格]pythonopencv3例項(物件識別和擴增實境)1-影像幾何轉換PythonOpenCV物件
- [雪峰磁針石部落格]使用jython進行dubbo介面及ngrinder效能測試
- [雪峰磁針石部落格]pythonGUI作業:tkinter控制元件改變背景色PythonNGUI控制元件
- [雪峰磁針石部落格]python標準模組介紹-string:文字常量和模板Python
- 計算機視覺實戰的深度學習實戰二:影像預處理計算機視覺深度學習
- [雪峰磁針石部落格]滲透測試簡介1滲透測試簡介
- [雪峰磁針石部落格]python庫介紹-argparse:命令列選項及引數解析Python命令列
- [雪峰磁針石部落格]flask構建自動化測試平臺1-helloFlask
- [雪峰磁針石部落格]flask構建自動化測試平臺3-模板Flask
- 機器視覺學習筆記:臉性別識別視覺筆記
- 計算機視覺與深度學習公司計算機視覺深度學習
- 計算機視覺中的深度學習計算機視覺深度學習
- [雪峰磁針石部落格]使用python3和flask構建RESTfulAPI(介面測試服務)PythonFlaskRESTAPI
- [雪峰磁針石部落格]python網路作業:使用python的socket庫實現ICMP協議的pingPython協議