關於使用sklearn進行資料預處理 —— 歸一化/標準化/正則化

夜空中最亮的不咚發表於2018-03-27

轉載

原地址 https://www.cnblogs.com/chaosimple/p/4153167.html


一、標準化(Z-Score),或者去除均值和方差縮放

公式為:(X-mean)/std 計算時對每個屬性/每列分別進行。

將資料按期屬性(按列進行)減去其均值,並處以其方差。得到的結果是,對於每個屬性/每列來說所有資料都聚集在0附近,方差為1。

實現時,有兩種不同的方式:

  • 使用sklearn.preprocessing.scale()函式,可以直接將給定資料進行標準化。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
>>> from sklearn import preprocessing
>>> import numpy as np
>>> X = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
>>> X_scaled = preprocessing.scale(X)
>>> X_scaled
array([[ 0. ..., -1.22..., 1.33...],
[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]])
>>>#處理後資料的均值和方差
>>> X_scaled.mean(axis=0)
array([ 0., 0., 0.])
>>> X_scaled.std(axis=0)
array([ 1., 1., 1.])
  • 使用sklearn.preprocessing.StandardScaler類,使用該類的好處在於可以儲存訓練集中的引數(均值、方差)直接使用其物件轉換測試集資料。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
>>> scaler = preprocessing.StandardScaler().fit(X)
>>> scaler
StandardScaler(copy=True, with_mean=True, with_std=True)
>>> scaler.mean_
array([ 1. ..., 0. ..., 0.33...])
>>> scaler.std_
array([ 0.81..., 0.81..., 1.24...])
>>> scaler.transform(X)
array([[ 0. ..., -1.22..., 1.33...],
[ 1.22..., 0. ..., -0.26...],
[-1.22..., 1.22..., -1.06...]])
>>>#可以直接使用訓練集對測試集資料進行轉換
>>> scaler.transform([[-1., 1., 0.]])
array([[-2.44..., 1.22..., -0.26...]])


二、將屬性縮放到一個指定範圍

除了上述介紹的方法之外,另一種常用的方法是將屬性縮放到一個指定的最大和最小值(通常是1-0)之間,這可以通過preprocessing.MinMaxScaler類實現。

使用這種方法的目的包括:

1、對於方差非常小的屬性可以增強其穩定性。

2、維持稀疏矩陣中為0的條目。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
>>> X_train = np.array([[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]])
...
>>> min_max_scaler = preprocessing.MinMaxScaler()
>>> X_train_minmax = min_max_scaler.fit_transform(X_train)
>>> X_train_minmax
array([[ 0.5 , 0. , 1. ],
[ 1. , 0.5 , 0.33333333],
[ 0. , 1. , 0. ]])
>>> #將相同的縮放應用到測試集資料中
>>> X_test = np.array([[ -3., -1., 4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5 , 0. , 1.66666667]])
>>> #縮放因子等屬性
>>> min_max_scaler.scale_
array([ 0.5 , 0.5 , 0.33...])
>>> min_max_scaler.min_
array([ 0. , 0.5 , 0.33...])

當然,在構造類物件的時候也可以直接指定最大最小值的範圍:feature_range=(min, max),此時應用的公式變為:

X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))

X_scaled=X_std/(max-min)+min


三、正則化(Normalization)

正則化的過程是將每個樣本縮放到單位範數(每個樣本的範數為1),如果後面要使用如二次型(點積)或者其它核方法計算兩個樣本之間的相似性這個方法會很有用。

Normalization主要思想是對每個樣本計算其p-範數,然後對該樣本中每個元素除以該範數,這樣處理的結果是使得每個處理後樣本的p-範數(l1-norm,l2-norm)等於1。

p-範數的計算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p

該方法主要應用於文字分類和聚類中。例如,對於兩個TF-IDF向量的l2-norm進行點積,就可以得到這兩個向量的餘弦相似性。

1、可以使用preprocessing.normalize()函式對指定資料進行轉換:

1
2
3
4
5
6
7
8
9
>>> X = [[ 1., -1., 2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')
>>> X_normalized
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])


2、可以使用processing.Normalizer()類實現對訓練集和測試集的擬合和轉換:

1
2
3
4
5
6
7
8
9
10
11
12
>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2')
>>>
>>> normalizer.transform(X)
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])
>>> normalizer.transform([[-1., 1., 0.]])
array([[-0.70..., 0.70..., 0. ...]])


補充:

關於使用sklearn進行資料預處理 —— 歸一化/標準化/正則化



相關文章