PostgreSQL 原始碼解讀(67)- 查詢語句#52(make_one_rel函式#17-...
本節大體介紹了動態規劃演算法實現(standard_join_search)中的join_search_one_level->make_join_rel->populate_joinrel_with_paths->add_paths_to_joinrel->sort_inner_and_outer中的initial_cost_mergejoin和final_cost_mergejoin函式,這些函式用於計算merge join的Cost。
一、資料結構
Cost相關
注意:實際使用的引數值透過系統配置檔案定義,而不是這裡的常量定義!
typedef double Cost; /* execution cost (in page-access units) */
/* defaults for costsize.c's Cost parameters */
/* NB: cost-estimation code should use the variables, not these constants! */
/* 注意:實際值透過系統配置檔案定義,而不是這裡的常量定義! */
/* If you change these, update backend/utils/misc/postgresql.sample.conf */
#define DEFAULT_SEQ_PAGE_COST 1.0 //順序掃描page的成本
#define DEFAULT_RANDOM_PAGE_COST 4.0 //隨機掃描page的成本
#define DEFAULT_CPU_TUPLE_COST 0.01 //處理一個元組的CPU成本
#define DEFAULT_CPU_INDEX_TUPLE_COST 0.005 //處理一個索引元組的CPU成本
#define DEFAULT_CPU_OPERATOR_COST 0.0025 //執行一次操作或函式的CPU成本
#define DEFAULT_PARALLEL_TUPLE_COST 0.1 //並行執行,從一個worker傳輸一個元組到另一個worker的成本
#define DEFAULT_PARALLEL_SETUP_COST 1000.0 //構建並行執行環境的成本
#define DEFAULT_EFFECTIVE_CACHE_SIZE 524288 /*先前已有介紹, measured in pages */
double seq_page_cost = DEFAULT_SEQ_PAGE_COST;
double random_page_cost = DEFAULT_RANDOM_PAGE_COST;
double cpu_tuple_cost = DEFAULT_CPU_TUPLE_COST;
double cpu_index_tuple_cost = DEFAULT_CPU_INDEX_TUPLE_COST;
double cpu_operator_cost = DEFAULT_CPU_OPERATOR_COST;
double parallel_tuple_cost = DEFAULT_PARALLEL_TUPLE_COST;
double parallel_setup_cost = DEFAULT_PARALLEL_SETUP_COST;
int effective_cache_size = DEFAULT_EFFECTIVE_CACHE_SIZE;
Cost disable_cost = 1.0e10;//1後面10個0,透過設定一個巨大的成本,讓最佳化器自動放棄此路徑
int max_parallel_workers_per_gather = 2;//每次gather使用的worker數
二、原始碼解讀
merge join演算法實現的虛擬碼如下:
READ data_set_1 SORT BY JOIN KEY TO temp_ds1
READ data_set_2 SORT BY JOIN KEY TO temp_ds2
READ ds1_row FROM temp_ds1
READ ds2_row FROM temp_ds2
WHILE NOT eof ON temp_ds1,temp_ds2 LOOP
IF ( temp_ds1.key = temp_ds2.key ) OUTPUT JOIN ds1_row,ds2_row
ELSIF ( temp_ds1.key <= temp_ds2.key ) READ ds1_row FROM temp_ds1
ELSIF ( temp_ds1.key => temp_ds2.key ) READ ds2_row FROM temp_ds2
END LOOP
try_mergejoin_path->initial_cost_mergejoin
該函式用於實現merge join路徑成本的初步估計。
//----------------------- try_mergejoin_path->initial_cost_mergejoin
/*
* initial_cost_mergejoin
* Preliminary estimate of the cost of a mergejoin path.
* merge join路徑成本的初步估計。
*
* This must quickly produce lower-bound estimates of the path's startup and
* total costs. If we are unable to eliminate the proposed path from
* consideration using the lower bounds, final_cost_mergejoin will be called
* to obtain the final estimates.
* 必須快速的對path啟動和總成本做出較低的估算。
* 如果無法使用下界消除嘗試對建議的路徑進行比較,那麼將呼叫final_cost_mergejoin來獲得最終估計。
*
* The exact division of labor between this function and final_cost_mergejoin
* is private to them, and represents a tradeoff between speed of the initial
* estimate and getting a tight lower bound. We choose to not examine the
* join quals here, except for obtaining the scan selectivity estimate which
* is really essential (but fortunately, use of caching keeps the cost of
* getting that down to something reasonable).
* We also assume that cost_sort is cheap enough to use here.
* 這個函式和final_cost_mergejoin之間存在確切的劃分,兩者是沒有相關的,
* 希望做到的是在初始估計的效能和得到嚴格的下限之間取得權衡。
* 在這裡,不檢查join quals,除非獲得非常重要的選擇性估計值
* (幸運的是,使用快取可以將成本降至合理的水平)。
* 我們會假定cost_sort引數設定得足夠的低.
*
* 'workspace' is to be filled with startup_cost, total_cost, and perhaps
* other data to be used by final_cost_mergejoin
* workspace-返回值,用於函式final_cost_mergejoin
* 'jointype' is the type of join to be performed
* jointype-連線型別
* 'mergeclauses' is the list of joinclauses to be used as merge clauses
* mergeclauses-作為合併條件的連線條件連結串列
* 'outer_path' is the outer input to the join
* 'inner_path' is the inner input to the join
* 'outersortkeys' is the list of sort keys for the outer path
* 'innersortkeys' is the list of sort keys for the inner path
* 'extra' contains miscellaneous information about the join
*
* Note: outersortkeys and innersortkeys should be NIL if no explicit
* sort is needed because the respective source path is already ordered.
*/
void
initial_cost_mergejoin(PlannerInfo *root, JoinCostWorkspace *workspace,
JoinType jointype,
List *mergeclauses,
Path *outer_path, Path *inner_path,
List *outersortkeys, List *innersortkeys,
JoinPathExtraData *extra)
{
Cost startup_cost = 0;
Cost run_cost = 0;
double outer_path_rows = outer_path->rows;
double inner_path_rows = inner_path->rows;
Cost inner_run_cost;
double outer_rows,
inner_rows,
outer_skip_rows,
inner_skip_rows;
Selectivity outerstartsel,
outerendsel,
innerstartsel,
innerendsel;
Path sort_path; /* dummy for result of cost_sort */
/* 確保行數大於0,並且不是NaN.Protect some assumptions below that rowcounts aren't zero or NaN */
if (outer_path_rows <= 0 || isnan(outer_path_rows))
outer_path_rows = 1;
if (inner_path_rows <= 0 || isnan(inner_path_rows))
inner_path_rows = 1;
/*
* A merge join will stop as soon as it exhausts either input stream
* (unless it's an outer join, in which case the outer side has to be
* scanned all the way anyway). Estimate fraction of the left and right
* inputs that will actually need to be scanned. Likewise, we can
* estimate the number of rows that will be skipped before the first join
* pair is found, which should be factored into startup cost. We use only
* the first (most significant) merge clause for this purpose. Since
* mergejoinscansel() is a fairly expensive computation, we cache the
* results in the merge clause RestrictInfo.
* merge join將在耗盡其中任意一個輸入流後立即停止
* (除非它是一個外部連線,在這種情況下無論如何都必須對外部進行掃描)。
* 估計需要掃描的左右輸入的部分。
* 同樣,可以估計在找到第一個連線對之前要跳過的行數,這應該考慮到啟動成本。
* 為此,考慮到mergejoinscansel()是一個相當昂貴的計算,只使用第一個(最重要的)merge子句,
* 我們將結果快取到merge子句的RestrictInfo中。
*/
if (mergeclauses && jointype != JOIN_FULL)//非全外連線
{
RestrictInfo *firstclause = (RestrictInfo *) linitial(mergeclauses);
List *opathkeys;
List *ipathkeys;
PathKey *opathkey;
PathKey *ipathkey;
MergeScanSelCache *cache;
/* Get the input pathkeys to determine the sort-order details */
opathkeys = outersortkeys ? outersortkeys : outer_path->pathkeys;
ipathkeys = innersortkeys ? innersortkeys : inner_path->pathkeys;
Assert(opathkeys);
Assert(ipathkeys);
opathkey = (PathKey *) linitial(opathkeys);
ipathkey = (PathKey *) linitial(ipathkeys);
/* debugging check */
if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation ||
opathkey->pk_strategy != ipathkey->pk_strategy ||
opathkey->pk_nulls_first != ipathkey->pk_nulls_first)
elog(ERROR, "left and right pathkeys do not match in mergejoin");
/* Get the selectivity with caching */
cache = cached_scansel(root, firstclause, opathkey);
if (bms_is_subset(firstclause->left_relids,
outer_path->parent->relids))
{
/* 子句左側為outer.left side of clause is outer */
outerstartsel = cache->leftstartsel;
outerendsel = cache->leftendsel;
innerstartsel = cache->rightstartsel;
innerendsel = cache->rightendsel;
}
else
{
/* 子句左側為innerer.left side of clause is inner */
outerstartsel = cache->rightstartsel;
outerendsel = cache->rightendsel;
innerstartsel = cache->leftstartsel;
innerendsel = cache->leftendsel;
}
if (jointype == JOIN_LEFT ||
jointype == JOIN_ANTI)
{
outerstartsel = 0.0;
outerendsel = 1.0;
}
else if (jointype == JOIN_RIGHT)
{
innerstartsel = 0.0;
innerendsel = 1.0;
}
}
else
{
/* 無條件或者全外連線.cope with clauseless or full mergejoin */
outerstartsel = innerstartsel = 0.0;
outerendsel = innerendsel = 1.0;
}
/*
* Convert selectivities to row counts. We force outer_rows and
* inner_rows to be at least 1, but the skip_rows estimates can be zero.
* 轉換選擇率為行數.
* outer_rows和inner_rows至少為1,但skip_rows可以為0.
*/
outer_skip_rows = rint(outer_path_rows * outerstartsel);
inner_skip_rows = rint(inner_path_rows * innerstartsel);
outer_rows = clamp_row_est(outer_path_rows * outerendsel);
inner_rows = clamp_row_est(inner_path_rows * innerendsel);
Assert(outer_skip_rows <= outer_rows);
Assert(inner_skip_rows <= inner_rows);
/*
* Readjust scan selectivities to account for above rounding. This is
* normally an insignificant effect, but when there are only a few rows in
* the inputs, failing to do this makes for a large percentage error.
* 重新調整掃描選擇性以考慮四捨五入。
* 通常來說,這是一個無關緊要的事情,但是當輸入中只有幾行時,如果不這樣做,就會造成很大的誤差。
*/
outerstartsel = outer_skip_rows / outer_path_rows;
innerstartsel = inner_skip_rows / inner_path_rows;
outerendsel = outer_rows / outer_path_rows;
innerendsel = inner_rows / inner_path_rows;
Assert(outerstartsel <= outerendsel);
Assert(innerstartsel <= innerendsel);
/* cost of source data */
if (outersortkeys) /* do we need to sort outer? */
{
cost_sort(&sort_path,
root,
outersortkeys,
outer_path->total_cost,
outer_path_rows,
outer_path->pathtarget->width,
0.0,
work_mem,
-1.0);//計算outer relation的排序成本
startup_cost += sort_path.startup_cost;
startup_cost += (sort_path.total_cost - sort_path.startup_cost)
* outerstartsel;
run_cost += (sort_path.total_cost - sort_path.startup_cost)
* (outerendsel - outerstartsel);
}
else
{
startup_cost += outer_path->startup_cost;
startup_cost += (outer_path->total_cost - outer_path->startup_cost)
* outerstartsel;
run_cost += (outer_path->total_cost - outer_path->startup_cost)
* (outerendsel - outerstartsel);
}
if (innersortkeys) /* do we need to sort inner? */
{
cost_sort(&sort_path,
root,
innersortkeys,
inner_path->total_cost,
inner_path_rows,
inner_path->pathtarget->width,
0.0,
work_mem,
-1.0);//計算inner relation的排序成本
startup_cost += sort_path.startup_cost;
startup_cost += (sort_path.total_cost - sort_path.startup_cost)
* innerstartsel;
inner_run_cost = (sort_path.total_cost - sort_path.startup_cost)
* (innerendsel - innerstartsel);
}
else
{
startup_cost += inner_path->startup_cost;
startup_cost += (inner_path->total_cost - inner_path->startup_cost)
* innerstartsel;
inner_run_cost = (inner_path->total_cost - inner_path->startup_cost)
* (innerendsel - innerstartsel);
}
/*
* We can't yet determine whether rescanning occurs, or whether
* materialization of the inner input should be done. The minimum
* possible inner input cost, regardless of rescan and materialization
* considerations, is inner_run_cost. We include that in
* workspace->total_cost, but not yet in run_cost.
* 現在還不能確定是否會重新掃描,或者是否應該物化inner relation。
* 不管是否重新掃描和是否嘗試物化,最小的inner relation input成本是inner_run_cost。
* 將其包含在workspace—>total_cost中,但不包含在run_cost中。
*/
/* CPU costs left for later */
/* Public result fields */
workspace->startup_cost = startup_cost;
workspace->total_cost = startup_cost + run_cost + inner_run_cost;
/* Save private data for final_cost_mergejoin */
workspace->run_cost = run_cost;
workspace->inner_run_cost = inner_run_cost;
workspace->outer_rows = outer_rows;
workspace->inner_rows = inner_rows;
workspace->outer_skip_rows = outer_skip_rows;
workspace->inner_skip_rows = inner_skip_rows;
}
try_mergejoin_path->add_path_precheck
該函式檢查新路徑是否可能被接受.
//----------------------- try_mergejoin_path->add_path_precheck
/*
* add_path_precheck
* Check whether a proposed new path could possibly get accepted.
* We assume we know the path's pathkeys and parameterization accurately,
* and have lower bounds for its costs.
* 檢查新路徑是否可能被接受。假設已經準確知道路徑的排序鍵和引數化,並且已知其成本的下限。
*
* Note that we do not know the path's rowcount, since getting an estimate for
* that is too expensive to do before prechecking. We assume here that paths
* of a superset parameterization will generate fewer rows; if that holds,
* then paths with different parameterizations cannot dominate each other
* and so we can simply ignore existing paths of another parameterization.
* (In the infrequent cases where that rule of thumb fails, add_path will
* get rid of the inferior path.)
* 注意:我們不知道訪問路徑的行數,因為在進行預檢查之前獲取它的估計值是非常昂貴的。
* 只能假設超集引數化的路徑會產生更少的行;
* 如果該假設成立,那麼具有不同引數化的路徑不能互相控制,因此可以簡單地忽略另一個引數化的現有路徑。
* (在這種經驗法則失效的情況下-雖然這種情況很少發生-add_path函式將刪除相對較差的路徑。)
*
* At the time this is called, we haven't actually built a Path structure,
* so the required information has to be passed piecemeal.
* 在呼叫這個函式時,實際上還沒有構建一個Path結構體,因此需要的資訊必須逐段傳遞。
*/
bool
add_path_precheck(RelOptInfo *parent_rel,
Cost startup_cost, Cost total_cost,
List *pathkeys, Relids required_outer)
{
List *new_path_pathkeys;
bool consider_startup;
ListCell *p1;
/* Pretend parameterized paths have no pathkeys, per add_path policy */
new_path_pathkeys = required_outer ? NIL : pathkeys;
/* Decide whether new path's startup cost is interesting */
consider_startup = required_outer ? parent_rel->consider_param_startup : parent_rel->consider_startup;
foreach(p1, parent_rel->pathlist)
{
Path *old_path = (Path *) lfirst(p1);
PathKeysComparison keyscmp;
/*
* We are looking for an old_path with the same parameterization (and
* by assumption the same rowcount) that dominates the new path on
* pathkeys as well as both cost metrics. If we find one, we can
* reject the new path.
* 尋找一個old_path,它具有相同的引數化(並假設有相同的行數),
* 在PathKey上主導新的路徑以及兩個成本指標。如果找到一個,就可以丟棄新的路徑。
*
* Cost comparisons here should match compare_path_costs_fuzzily.
* 這裡的成本比較應該與compare_path_costs_fuzzily匹配。
*/
if (total_cost > old_path->total_cost * STD_FUZZ_FACTOR)
{
/* new path can win on startup cost only if consider_startup */
if (startup_cost > old_path->startup_cost * STD_FUZZ_FACTOR ||
!consider_startup)
{
/* 新路徑成本較高,檢查排序鍵.new path loses on cost, so check pathkeys... */
List *old_path_pathkeys;
old_path_pathkeys = old_path->param_info ? NIL : old_path->pathkeys;
keyscmp = compare_pathkeys(new_path_pathkeys,
old_path_pathkeys);
if (keyscmp == PATHKEYS_EQUAL ||
keyscmp == PATHKEYS_BETTER2)
{
/* 排序鍵也不佔優,丟棄之.new path does not win on pathkeys... */
if (bms_equal(required_outer, PATH_REQ_OUTER(old_path)))
{
/* Found an old path that dominates the new one */
return false;
}
}
}
}
else
{
/*
* Since the pathlist is sorted by total_cost, we can stop looking
* once we reach a path with a total_cost larger than the new
* path's.
* 由於路徑連結串列是按total_cost排序的,所以當發現一個total_cost大於新路徑成本的路徑時,停止查詢。
*/
break;
}
}
return true;
}
create_mergejoin_path->final_cost_mergejoin
該函式確定mergejoin path最終的成本和大小.
//-------------- create_mergejoin_path->final_cost_mergejoin
/*
* final_cost_mergejoin
* Final estimate of the cost and result size of a mergejoin path.
* 確定mergejoin path最終的成本和大小
*
* Unlike other costsize functions, this routine makes two actual decisions:
* whether the executor will need to do mark/restore, and whether we should
* materialize the inner path. It would be logically cleaner to build
* separate paths testing these alternatives, but that would require repeating
* most of the cost calculations, which are not all that cheap. Since the
* choice will not affect output pathkeys or startup cost, only total cost,
* there is no possibility of wanting to keep more than one path. So it seems
* best to make the decisions here and record them in the path's
* skip_mark_restore and materialize_inner fields.
* 與其他costsize函式不同,該函式做出了兩個實際決策:執行器是否需要執行mark/restore,以及是否應該物化內部訪問路徑。
* 在邏輯上,構建單獨的路徑來測試這些替代方案會更簡潔,但這需要重複大部分影響效能的成本計算過程。
* 由於選擇率不會影響輸出PathKey或啟動成本,只會影響總成本,因此不可能保留多個路徑。
* 因此,最好在這裡做出決定,並將其記錄在path的skip_mark_restore和materialize_inner欄位中。
*
* Mark/restore overhead is usually required, but can be skipped if we know
* that the executor need find only one match per outer tuple, and that the
* mergeclauses are sufficient to identify a match.
* 通常需要mark/restore的開銷,但是如果知道執行器只需要為每個外部元組找到一個匹配,
* 並且mergeclauses足以識別匹配,那麼可以忽略這個開銷。
*
* We materialize the inner path if we need mark/restore and either the inner
* path can't support mark/restore, or it's cheaper to use an interposed
* Material node to handle mark/restore.
* 如果需要mark/restore,或者內部路徑不支援mark/restore,
* 或者使用插入的物化節點來處理mark/restore,最佳化器就會物化inner relation的訪問路徑。
*
* 'path' is already filled in except for the rows and cost fields and
* skip_mark_restore and materialize_inner
* path-MergePath節點
* 'workspace' is the result from initial_cost_mergejoin
* workspace-initial_cost_mergejoin函式返回的結果
* 'extra' contains miscellaneous information about the join
* extra-額外的資訊
*/
void
final_cost_mergejoin(PlannerInfo *root, MergePath *path,
JoinCostWorkspace *workspace,
JoinPathExtraData *extra)
{
Path *outer_path = path->jpath.outerjoinpath;
Path *inner_path = path->jpath.innerjoinpath;
double inner_path_rows = inner_path->rows;
List *mergeclauses = path->path_mergeclauses;
List *innersortkeys = path->innersortkeys;
Cost startup_cost = workspace->startup_cost;
Cost run_cost = workspace->run_cost;
Cost inner_run_cost = workspace->inner_run_cost;
double outer_rows = workspace->outer_rows;
double inner_rows = workspace->inner_rows;
double outer_skip_rows = workspace->outer_skip_rows;
double inner_skip_rows = workspace->inner_skip_rows;
Cost cpu_per_tuple,
bare_inner_cost,
mat_inner_cost;
QualCost merge_qual_cost;
QualCost qp_qual_cost;
double mergejointuples,
rescannedtuples;
double rescanratio;
/* 確保行數合法.Protect some assumptions below that rowcounts aren't zero or NaN */
if (inner_path_rows <= 0 || isnan(inner_path_rows))
inner_path_rows = 1;
/* 標記訪問路徑的行數.Mark the path with the correct row estimate */
if (path->jpath.path.param_info)
path->jpath.path.rows = path->jpath.path.param_info->ppi_rows;
else
path->jpath.path.rows = path->jpath.path.parent->rows;
/* 並行執行,調整行數.For partial paths, scale row estimate. */
if (path->jpath.path.parallel_workers > 0)
{
double parallel_divisor = get_parallel_divisor(&path->jpath.path);
path->jpath.path.rows =
clamp_row_est(path->jpath.path.rows / parallel_divisor);
}
/*
* We could include disable_cost in the preliminary estimate, but that
* would amount to optimizing for the case where the join method is
* disabled, which doesn't seem like the way to bet.
* 不允許merge join則設定為高成本
*/
if (!enable_mergejoin)
startup_cost += disable_cost;
/*
* Compute cost of the mergequals and qpquals (other restriction clauses)
* separately.
* 分別計算mergequals和qpquals的成本
*/
cost_qual_eval(&merge_qual_cost, mergeclauses, root);
cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
qp_qual_cost.startup -= merge_qual_cost.startup;
qp_qual_cost.per_tuple -= merge_qual_cost.per_tuple;
/*
* With a SEMI or ANTI join, or if the innerrel is known unique, the
* executor will stop scanning for matches after the first match. When
* all the joinclauses are merge clauses, this means we don't ever need to
* back up the merge, and so we can skip mark/restore overhead.
* 使用半連線或反連線,或者inner relation返回的結果唯一,
* 執行程式將在第一次匹配後停止掃描匹配。
* 當所有的joinclauses都是merge子句時,意味著不需要備份merge,這樣就可以跳過mark/restore步驟。
*/
if ((path->jpath.jointype == JOIN_SEMI ||
path->jpath.jointype == JOIN_ANTI ||
extra->inner_unique) &&
(list_length(path->jpath.joinrestrictinfo) ==
list_length(path->path_mergeclauses)))
path->skip_mark_restore = true;
else
path->skip_mark_restore = false;
/*
* Get approx # tuples passing the mergequals. We use approx_tuple_count
* here because we need an estimate done with JOIN_INNER semantics.
* 透過mergequals條件獲得大約的元組數。
* 這裡使用approx_tuple_count,因為需要使用JOIN_INNER語義進行評估。
*/
mergejointuples = approx_tuple_count(root, &path->jpath, mergeclauses);
/*
* When there are equal merge keys in the outer relation, the mergejoin
* must rescan any matching tuples in the inner relation. This means
* re-fetching inner tuples; we have to estimate how often that happens.
* 當外部關係中有相等的merge鍵時,merge join必須重新掃描內部關係中的所有匹配元組。
* 這意味著需要重新獲取內部元組;必須估計這種情況發生的頻率。
*
* For regular inner and outer joins, the number of re-fetches can be
* estimated approximately as size of merge join output minus size of
* inner relation. Assume that the distinct key values are 1, 2, ..., and
* denote the number of values of each key in the outer relation as m1,
* m2, ...; in the inner relation, n1, n2, ... Then we have
*
* size of join = m1 * n1 + m2 * n2 + ...
*
* number of rescanned tuples = (m1 - 1) * n1 + (m2 - 1) * n2 + ... = m1 *
* n1 + m2 * n2 + ... - (n1 + n2 + ...) = size of join - size of inner
* relation
*
* 對於常規的內連線和外連線,重新獲取的次數可以近似估計為合併連線輸出的大小減去內部關係的大小。
* 假設唯一鍵值是1, 2…,表示外部關係中每個鍵的值個數為m1, m2,…;在內部關係中,n1, n2,…
* 那麼會得到:
* 連線的大小 = m1 * n1 + m2 * n2 + ...
* 重新掃描的元組數 = (m1 - 1) * n1 + (m2 - 1) * n2 + ... = m1 * n1 + m2 * n2 + ... - (n1 + n2 + ...)
* = size of join - size of inner relation
*
* This equation works correctly for outer tuples having no inner match
* (nk = 0), but not for inner tuples having no outer match (mk = 0); we
* are effectively subtracting those from the number of rescanned tuples,
* when we should not. Can we do better without expensive selectivity
* computations?
* 對於沒有內部匹配(nk = 0)的外部元組,這個方程是正確的,
* 但是對於沒有外部匹配(mk = 0)的內部元組,這個方程就不正確了;
* 不這樣做時,實際上是在從重新掃描元組的數量中減去這些元組。
* 如果沒有昂貴的選擇性計算,能做得更好嗎?
*
* The whole issue is moot if we are working from a unique-ified outer
* input, or if we know we don't need to mark/restore at all.
* 如果使用的是唯一的外部輸入,或者知道根本不需要mark/restore,那麼探討該問題是沒有意義的。
*/
if (IsA(outer_path, UniquePath) ||path->skip_mark_restore)
rescannedtuples = 0;
else
{
rescannedtuples = mergejointuples - inner_path_rows;
/* Must clamp because of possible underestimate */
if (rescannedtuples < 0)
rescannedtuples = 0;
}
/* 對於重複掃描,需要額外增加成本.We'll inflate various costs this much to account for rescanning */
rescanratio = 1.0 + (rescannedtuples / inner_path_rows);
/*
* Decide whether we want to materialize the inner input to shield it from
* mark/restore and performing re-fetches. Our cost model for regular
* re-fetches is that a re-fetch costs the same as an original fetch,
* which is probably an overestimate; but on the other hand we ignore the
* bookkeeping costs of mark/restore. Not clear if it's worth developing
* a more refined model. So we just need to inflate the inner run cost by
* rescanratio.
* 決定是否要物化inner relation的訪問路徑,以使其不受mark/restore和執行重新獲取操作的影響。
* 對於定期重取的成本模型是,一次重取的成本與一次原始取回的成本相同,當然這可能高估了該成本;
* 但另一方面,忽略了mark/restore的簿記成本。
* 目前尚不清楚是否值得開發一個更完善的模型。所以只需要把內部執行成本乘上相應的比例。
*/
bare_inner_cost = inner_run_cost * rescanratio;
/*
* When we interpose a Material node the re-fetch cost is assumed to be
* just cpu_operator_cost per tuple, independently of the underlying
* plan's cost; and we charge an extra cpu_operator_cost per original
* fetch as well. Note that we're assuming the materialize node will
* never spill to disk, since it only has to remember tuples back to the
* last mark. (If there are a huge number of duplicates, our other cost
* factors will make the path so expensive that it probably won't get
* chosen anyway.) So we don't use cost_rescan here.
* 當插入一個物化節點時,重新取回的成本被假設為cpu_operator_cost/每個元組,該成本獨立於底層計劃的成本;
* 對每次原始取回增加額外的cpu_operator_cost。
* 注意,我們假設物化節點永遠不會溢位到磁碟上,因為它只需要記住元組的最後一個標記。
* (如果有大量的重複項,其他成本因素會使路徑變得非常昂貴,可能無論如何都不會被選中。)
* 因此在這裡,我們不呼叫cost_rescan。
*
* Note: keep this estimate in sync with create_mergejoin_plan's labeling
* of the generated Material node.
* 注意:與create_mergejoin_plan函式生成的物化節點標記保持一致。
*/
mat_inner_cost = inner_run_cost +
cpu_operator_cost * inner_path_rows * rescanratio;
/*
* If we don't need mark/restore at all, we don't need materialization.
* 如果不需要mark/restore,那麼也不需要物化
*/
if (path->skip_mark_restore)
path->materialize_inner = false;
/*
* Prefer materializing if it looks cheaper, unless the user has asked to
* suppress materialization.
* 如果物化看起來成本更低,那麼就選擇物化,前提是使用者允許物化。
*/
else if (enable_material && mat_inner_cost < bare_inner_cost)
path->materialize_inner = true;
/*
* Even if materializing doesn't look cheaper, we *must* do it if the
* inner path is to be used directly (without sorting) and it doesn't
* support mark/restore.
* 即使物化看起來成本不低,
* 但如果inner relation的訪問路徑是直接使用(沒有排序)並且不支援mark/restore,我們也必須這樣做。
*
* Since the inner side must be ordered, and only Sorts and IndexScans can
* create order to begin with, and they both support mark/restore, you
* might think there's no problem --- but you'd be wrong. Nestloop and
* merge joins can *preserve* the order of their inputs, so they can be
* selected as the input of a mergejoin, and they don't support
* mark/restore at present.
* 因為inner端必須是有序的,並且只有Sorts和IndexScan才能從一開始就建立排序,
* 而且它們都支援mark/restore,所以可能認為這樣處理沒有問題——但是錯了。
* Nestloop join和merge join可以“保留”它們的輸入順序,
* 因此它們可以被選擇為merge join的輸入,而且它們目前不支援mark/restore。
*
* We don't test the value of enable_material here, because
* materialization is required for correctness in this case, and turning
* it off does not entitle us to deliver an invalid plan.
* 在這裡不會理會enable_material的設定,因為在這種情況下,優先保證正確性,
* 而關閉它會讓最佳化器產生無效的執行計劃。
*/
else if (innersortkeys == NIL &&
!ExecSupportsMarkRestore(inner_path))
path->materialize_inner = true;
/*
* Also, force materializing if the inner path is to be sorted and the
* sort is expected to spill to disk. This is because the final merge
* pass can be done on-the-fly if it doesn't have to support mark/restore.
* We don't try to adjust the cost estimates for this consideration,
* though.
* 另外,如果要對inner relation訪問路徑進行排序,且排序可能會溢位到磁碟,則強制實現。
* 這是因為如果不需要支援mark/restore,最終的merge過程可以在執行中完成。
* 不過,我們並沒有試圖為此調整成本估算。
*
* Since materialization is a performance optimization in this case,
* rather than necessary for correctness, we skip it if enable_material is
* off.
* 由於在這種情況下,物化處理是一種效能最佳化,而不是保證正確的必要條件,
* 所以如果enable_material關閉了,那麼就忽略它。
*/
else if (enable_material && innersortkeys != NIL &&
relation_byte_size(inner_path_rows,
inner_path->pathtarget->width) >
(work_mem * 1024L))
path->materialize_inner = true;
else
path->materialize_inner = false;
/* 調整執行期成本.Charge the right incremental cost for the chosen case */
if (path->materialize_inner)
run_cost += mat_inner_cost;
else
run_cost += bare_inner_cost;
/* CPU 成本計算.CPU costs */
/*
* The number of tuple comparisons needed is approximately number of outer
* rows plus number of inner rows plus number of rescanned tuples (can we
* refine this?). At each one, we need to evaluate the mergejoin quals.
* 需要比較的元組數量大約是外部行數加上內部行數加上重掃描元組數(可以改進它嗎?)
* 在每一個點上,需要計算合併後的數量。
*/
startup_cost += merge_qual_cost.startup;
startup_cost += merge_qual_cost.per_tuple *
(outer_skip_rows + inner_skip_rows * rescanratio);
run_cost += merge_qual_cost.per_tuple *
((outer_rows - outer_skip_rows) +
(inner_rows - inner_skip_rows) * rescanratio);
/*
* For each tuple that gets through the mergejoin proper, we charge
* cpu_tuple_cost plus the cost of evaluating additional restriction
* clauses that are to be applied at the join. (This is pessimistic since
* not all of the quals may get evaluated at each tuple.)
* 對於每個透過合併連線得到的元組,每一個元組的成本是cpu_tuple_cost,加上將在連線上應用的附加限制條件的成本。
* (當然這是悲觀的做法,因為並不是所有的條件都能在每個元組上得到應用。)
*
* Note: we could adjust for SEMI/ANTI joins skipping some qual
* evaluations here, but it's probably not worth the trouble.
* 注意:我們可以對半/反連線進行調整,跳過一些條件評估,但這可能並不值得。
*/
startup_cost += qp_qual_cost.startup;
cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
run_cost += cpu_per_tuple * mergejointuples;
/* 投影列的估算按輸出行計算,而不是掃描的元組.tlist eval costs are paid per output row, not per tuple scanned */
startup_cost += path->jpath.path.pathtarget->cost.startup;
run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
path->jpath.path.startup_cost = startup_cost;
path->jpath.path.total_cost = startup_cost + run_cost;
}
三、跟蹤分析
測試指令碼如下
select a.*,b.grbh,b.je
from t_dwxx a,
lateral (select t1.dwbh,t1.grbh,t2.je
from t_grxx t1
inner join t_jfxx t2 on t1.dwbh = a.dwbh and t1.grbh = t2.grbh) b
order by b.dwbh;
啟動gdb,設定斷點
(gdb) b try_mergejoin_path
Breakpoint 1 at 0x7aeeaf: file joinpath.c, line 572.
(gdb) c
Continuing.
Breakpoint 1, try_mergejoin_path (root=0x166c880, joinrel=0x16864d0, outer_path=0x167f190, inner_path=0x167f9d0, pathkeys=0x1
innersortkeys=0x1686c28, jointype=JOIN_INNER, extra=0x7ffea604f500, is_partial=false) at joinpath.c:572
572 if (is_partial)
進入initial_cost_mergejoin函式
(gdb)
615 initial_cost_mergejoin(root, &workspace, jointype, mergeclauses,
(gdb) step
initial_cost_mergejoin (root=0x166c880, workspace=0x7ffea604f360, jointype=JOIN_INNER, mergeclauses=0x1686bc8, outer_path=0x167f190, inner_path=0x167f9d0, outersortkeys=0x1686b68,
innersortkeys=0x1686c28, extra=0x7ffea604f500) at costsize.c:2607
2607 Cost startup_cost = 0;
初始化引數
2607 Cost startup_cost = 0;
(gdb) n
2608 Cost run_cost = 0;
...
存在merge條件,JOIN_INNER連線,進入相應的分支
...
2639 if (mergeclauses && jointype != JOIN_FULL)
(gdb)
2641 RestrictInfo *firstclause = (RestrictInfo *) linitial(mergeclauses);
...
檢視約束條件,即t_dwxx.dwbh = t_grxx.dwbh
(gdb) set $arg1=(RelabelType *)((OpExpr *)firstclause->clause)->args->head->data.ptr_value
(gdb) set $arg2=(RelabelType *)((OpExpr *)firstclause->clause)->args->head->next->data.ptr_value
(gdb) p *(Var *)$arg1->arg
$9 = {xpr = {type = T_Var}, varno = 1, varattno = 2, vartype = 1043, vartypmod = 24, varcollid = 100, varlevelsup = 0, varnoold = 1, varoattno = 2, location = 218}
(gdb) p *(Var *)$arg2->arg
$10 = {xpr = {type = T_Var}, varno = 3, varattno = 1, vartype = 1043, vartypmod = 14, varcollid = 100, varlevelsup = 0, varnoold = 3, varoattno = 1, location = 208}
獲取連線的outer和inner relation的排序鍵
...
(gdb)
2649 opathkeys = outersortkeys ? outersortkeys : outer_path->pathkeys;
(gdb) n
2650 ipathkeys = innersortkeys ? innersortkeys : inner_path->pathkeys;
...
獲取快取的選擇率
...
(gdb)
2663 cache = cached_scansel(root, firstclause, opathkey);
(gdb)
2666 outer_path->parent->relids))
(gdb) p *cache
$15 = {opfamily = 1994, collation = 100, strategy = 1, nulls_first = false, leftstartsel = 0, leftendsel = 0.99989010989010996, rightstartsel = 0.0091075159436798652, rightendsel = 1}
選擇率賦值,連線子句左側為outer relation
2665 if (bms_is_subset(firstclause->left_relids,
(gdb)
2669 outerstartsel = cache->leftstartsel;
(gdb)
2670 outerendsel = cache->leftendsel;
(gdb)
2671 innerstartsel = cache->rightstartsel;
(gdb)
2672 innerendsel = cache->rightendsel;
把選擇率轉換為行數
(gdb)
2705 outer_skip_rows = rint(outer_path_rows * outerstartsel);
(gdb)
2706 inner_skip_rows = rint(inner_path_rows * innerstartsel);
(gdb)
2707 outer_rows = clamp_row_est(outer_path_rows * outerendsel);
(gdb)
2708 inner_rows = clamp_row_est(inner_path_rows * innerendsel);
(gdb) p outer_skip_rows
$16 = 0
(gdb) p inner_skip_rows
$17 = 911
(gdb) p outer_rows
$18 = 9999
(gdb) p inner_rows
$19 = 100000
計算outer relation的排序成本並賦值
...
(gdb)
2728 if (outersortkeys) /* do we need to sort outer? */
(gdb)
2730 cost_sort(&sort_path,
(gdb) n
2735 outer_path->pathtarget->width,
...
(gdb) n
2739 startup_cost += sort_path.startup_cost;
(gdb) p sort_path
$24 = {type = T_Invalid, pathtype = T_Invalid, parent = 0x167f9d0, pathtarget = 0x0, param_info = 0x0, parallel_aware = false, parallel_safe = false, parallel_workers = 0, rows = 10000,
startup_cost = 828.38561897747286, total_cost = 853.38561897747286, pathkeys = 0x167f9d0}
計算inner relation的排序成本並賦值
...
2754 if (innersortkeys) /* do we need to sort inner? */
(gdb)
2756 cost_sort(&sort_path,
...
(gdb) p sort_path
$25 = {type = T_Invalid, pathtype = T_Invalid, parent = 0x167f9d0, pathtarget = 0x0, param_info = 0x0, parallel_aware = false, parallel_safe = false, parallel_workers = 0, rows = 100000,
startup_cost = 10030.82023721841, total_cost = 10280.82023721841, pathkeys = 0x167f9d0}
賦值給workspace,結束initial_cost_mergejoin函式呼叫.
(gdb)
2791 workspace->startup_cost = startup_cost;
(gdb)
2792 workspace->total_cost = startup_cost + run_cost + inner_run_cost;
(gdb)
2794 workspace->run_cost = run_cost;
(gdb)
2795 workspace->inner_run_cost = inner_run_cost;
(gdb)
2796 workspace->outer_rows = outer_rows;
(gdb)
2797 workspace->inner_rows = inner_rows;
(gdb)
2798 workspace->outer_skip_rows = outer_skip_rows;
(gdb)
2799 workspace->inner_skip_rows = inner_skip_rows;
(gdb)
2800 }
進入add_path_precheck函式
(gdb) n
try_mergejoin_path (root=0x166c880, joinrel=0x16864d0, outer_path=0x167f190, inner_path=0x167f9d0, pathkeys=0x1686b68, mergeclauses=0x1686bc8, outersortkeys=0x1686b68, innersortkeys=0x1686c28,
jointype=JOIN_INNER, extra=0x7ffea604f500, is_partial=false) at joinpath.c:620
620 if (add_path_precheck(joinrel,
(gdb) step
add_path_precheck (parent_rel=0x16864d0, startup_cost=10861.483356195882, total_cost=11134.203356195881, pathkeys=0x1686b68, required_outer=0x0) at pathnode.c:666
666 new_path_pathkeys = required_outer ? NIL : pathkeys;
parent_rel->pathlist為NULL,結束呼叫,返回true
671 foreach(p1, parent_rel->pathlist)
(gdb) p *parent_rel->pathlist
Cannot access memory at address 0x0
(gdb) n
719 return true;
進入final_cost_mergejoin函式
(gdb) b final_cost_mergejoin
Breakpoint 2 at 0x7a00c9: file costsize.c, line 2834.
(gdb) c
Continuing.
Breakpoint 2, final_cost_mergejoin (root=0x166c880, path=0x1686cb8, workspace=0x7ffea604f360, extra=0x7ffea604f500) at costsize.c:2834
2834 Path *outer_path = path->jpath.outerjoinpath;
檢視outer relation和inner relation的訪問路徑
2834 Path *outer_path = path->jpath.outerjoinpath;
(gdb) n
2835 Path *inner_path = path->jpath.innerjoinpath;
(gdb)
2836 double inner_path_rows = inner_path->rows;
(gdb) p *outer_path
$26 = {type = T_Path, pathtype = T_SeqScan, parent = 0x166c2c0, pathtarget = 0x1671670, param_info = 0x0, parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 10000,
startup_cost = 0, total_cost = 164, pathkeys = 0x0}
(gdb) p *inner_path
$27 = {type = T_Path, pathtype = T_SeqScan, parent = 0x166c4d8, pathtarget = 0x1673510, param_info = 0x0, parallel_aware = false, parallel_safe = true, parallel_workers = 0, rows = 100000,
startup_cost = 0, total_cost = 1726, pathkeys = 0x0}
其他引數的賦值
(gdb) n
2837 List *mergeclauses = path->path_mergeclauses;
(gdb)
2838 List *innersortkeys = path->innersortkeys;
...
分別計算mergequals和qpquals的成本
...
(gdb)
2886 cost_qual_eval(&merge_qual_cost, mergeclauses, root);
(gdb)
2887 cost_qual_eval(&qp_qual_cost, path->jpath.joinrestrictinfo, root);
(gdb)
2888 qp_qual_cost.startup -= merge_qual_cost.startup;
(gdb) p merge_qual_cost
$28 = {startup = 0, per_tuple = 0.0025000000000000001}
(gdb) p qp_qual_cost
$29 = {startup = 0, per_tuple = 0.0025000000000000001}
透過mergequals條件獲得大約的元組數
...
(gdb)
2910 mergejointuples = approx_tuple_count(root, &path->jpath, mergeclauses);
(gdb)
2938 if (IsA(outer_path, UniquePath) ||path->skip_mark_restore)
(gdb) p mergejointuples
$30 = 100000
計算相同元組導致的重複掃描率
(gdb) n
2942 rescannedtuples = mergejointuples - inner_path_rows;
(gdb)
2944 if (rescannedtuples < 0)
(gdb)
2948 rescanratio = 1.0 + (rescannedtuples / inner_path_rows);
(gdb) p rescanratio
$31 = 1
(gdb) p rescannedtuples
$32 = 0
物化處理,結果是inner relation掃描無需物化:path->materialize_inner = false;
(gdb)
2974 mat_inner_cost = inner_run_cost +
(gdb) n
2980 if (path->skip_mark_restore)
(gdb)
2987 else if (enable_material && mat_inner_cost < bare_inner_cost)
(gdb)
3006 else if (innersortkeys == NIL &&
(gdb)
3021 else if (enable_material && innersortkeys != NIL &&
(gdb)
3023 inner_path->pathtarget->width) >
(gdb) p mat_inner_cost
$34 = 497.72250000000003
...
3021 else if (enable_material && innersortkeys != NIL &&
(gdb)
3027 path->materialize_inner = false;
計算成本
(gdb) n
3043 startup_cost += merge_qual_cost.per_tuple *
(gdb)
3044 (outer_skip_rows + inner_skip_rows * rescanratio);
(gdb)
3043 startup_cost += merge_qual_cost.per_tuple *
(gdb)
3045 run_cost += merge_qual_cost.per_tuple *
(gdb)
3046 ((outer_rows - outer_skip_rows) +
(gdb)
3047 (inner_rows - inner_skip_rows) * rescanratio);
(gdb)
3046 ((outer_rows - outer_skip_rows) +
(gdb)
3045 run_cost += merge_qual_cost.per_tuple *
(gdb)
3058 startup_cost += qp_qual_cost.startup;
(gdb)
3059 cpu_per_tuple = cpu_tuple_cost + qp_qual_cost.per_tuple;
(gdb)
3060 run_cost += cpu_per_tuple * mergejointuples;
(gdb)
3063 startup_cost += path->jpath.path.pathtarget->cost.startup;
(gdb)
3064 run_cost += path->jpath.path.pathtarget->cost.per_tuple * path->jpath.path.rows;
(gdb)
3066 path->jpath.path.startup_cost = startup_cost;
(gdb)
3067 path->jpath.path.total_cost = startup_cost + run_cost;
(gdb)
3068 }
完成呼叫
(gdb)
create_mergejoin_path (root=0x166c880, joinrel=0x16864d0, jointype=JOIN_INNER, workspace=0x7ffea604f360, extra=0x7ffea604f500, outer_path=0x167f190, inner_path=0x167f9d0, restrict_clauses=0x16869a8,
pathkeys=0x1686b68, required_outer=0x0, mergeclauses=0x1686bc8, outersortkeys=0x1686b68, innersortkeys=0x1686c28) at pathnode.c:2298
2298 return pathnode;
MergePath節點資訊
2298 return pathnode;
(gdb) p *pathnode
$36 = {jpath = {path = {type = T_MergePath, pathtype = T_MergeJoin, parent = 0x16864d0, pathtarget = 0x1686708, param_info = 0x0, parallel_aware = false, parallel_safe = true, parallel_workers = 0,
rows = 100000, startup_cost = 10863.760856195882, total_cost = 12409.200856195883, pathkeys = 0x1686b68}, jointype = JOIN_INNER, inner_unique = false, outerjoinpath = 0x167f190,
innerjoinpath = 0x167f9d0, joinrestrictinfo = 0x16869a8}, path_mergeclauses = 0x1686bc8, outersortkeys = 0x1686b68, innersortkeys = 0x1686c28, skip_mark_restore = false,
materialize_inner = false}
DONE!
四、參考資料
allpaths.c
cost.h
costsize.c
PG Document:Query Planning
來自 “ ITPUB部落格 ” ,連結:http://blog.itpub.net/6906/viewspace-2374832/,如需轉載,請註明出處,否則將追究法律責任。
相關文章
- PostgreSQL 原始碼解讀(52)- 查詢語句#37(make_one_rel函式#2-估...SQL原始碼函式
- PostgreSQL 原始碼解讀(52)- 查詢語句#37(make_one_rel函式#2-估算關係大小)SQL原始碼函式
- PostgreSQL 原始碼解讀(82)- 查詢語句#67(PortalXXX系列函式)SQL原始碼函式
- PostgreSQL 原始碼解讀(65)- 查詢語句#50(make_one_rel函式#15-...SQL原始碼函式
- PostgreSQL 原始碼解讀(62)- 查詢語句#47(make_one_rel函式#12-...SQL原始碼函式
- PostgreSQL 原始碼解讀(63)- 查詢語句#48(make_one_rel函式#13-...SQL原始碼函式
- PostgreSQL 原始碼解讀(64)- 查詢語句#49(make_one_rel函式#14-...SQL原始碼函式
- PostgreSQL 原始碼解讀(60)- 查詢語句#45(make_one_rel函式#10-...SQL原始碼函式
- PostgreSQL 原始碼解讀(61)- 查詢語句#46(make_one_rel函式#11-...SQL原始碼函式
- PostgreSQL 原始碼解讀(69)- 查詢語句#54(make_one_rel函式#19-...SQL原始碼函式
- PostgreSQL 原始碼解讀(70)- 查詢語句#55(make_one_rel函式#20-...SQL原始碼函式
- PostgreSQL 原始碼解讀(66)- 查詢語句#51(make_one_rel函式#16-...SQL原始碼函式
- PostgreSQL 原始碼解讀(68)- 查詢語句#53(make_one_rel函式#18-...SQL原始碼函式
- PostgreSQL 原始碼解讀(71)- 查詢語句#56(make_one_rel函式#21-...SQL原始碼函式
- PostgreSQL 原始碼解讀(72)- 查詢語句#57(make_one_rel函式#22-...SQL原始碼函式
- PostgreSQL 原始碼解讀(53)- 查詢語句#38(make_one_rel函式#3-順...SQL原始碼函式
- PostgreSQL 原始碼解讀(54)- 查詢語句#39(make_one_rel函式#4-生...SQL原始碼函式
- PostgreSQL 原始碼解讀(55)- 查詢語句#40(make_one_rel函式#5-索...SQL原始碼函式
- PostgreSQL 原始碼解讀(56)- 查詢語句#41(make_one_rel函式#6-索...SQL原始碼函式
- PostgreSQL 原始碼解讀(57)- 查詢語句#42(make_one_rel函式#7-索...SQL原始碼函式
- PostgreSQL 原始碼解讀(58)- 查詢語句#43(make_one_rel函式#8-B...SQL原始碼函式
- PostgreSQL 原始碼解讀(59)- 查詢語句#44(make_one_rel函式#9-B...SQL原始碼函式
- PostgreSQL 原始碼解讀(49)- 查詢語句#34(make_one_rel函式#1-概覽)SQL原始碼函式
- PostgreSQL 原始碼解讀(83)- 查詢語句#68(PortalStart函式)SQL原始碼函式
- PostgreSQL 原始碼解讀(90)- 查詢語句#75(ExecHashJoin函式#1)SQL原始碼函式
- PostgreSQL 原始碼解讀(91)- 查詢語句#76(ExecHashJoin函式#2)SQL原始碼函式
- PostgreSQL 原始碼解讀(93)- 查詢語句#77(ExecHashJoin函式#3)SQL原始碼函式
- PostgreSQL 原始碼解讀(95)- 查詢語句#78(ExecHashJoin函式#4-H...SQL原始碼函式
- PostgreSQL 原始碼解讀(97)- 查詢語句#79(ExecHashJoin函式#5-H...SQL原始碼函式
- PostgreSQL 原始碼解讀(88)- 查詢語句#73(SeqNext函式#1)SQL原始碼函式
- PostgreSQL 原始碼解讀(89)- 查詢語句#74(SeqNext函式#2)SQL原始碼函式
- PostgreSQL 原始碼解讀(46)- 查詢語句#31(query_planner函式#7)SQL原始碼函式
- PostgreSQL 原始碼解讀(47)- 查詢語句#32(query_planner函式#8)SQL原始碼函式
- PostgreSQL 原始碼解讀(48)- 查詢語句#33(query_planner函式#9)SQL原始碼函式
- PostgreSQL 原始碼解讀(41)- 查詢語句#26(query_planner函式#4)SQL原始碼函式
- PostgreSQL 原始碼解讀(40)- 查詢語句#25(query_planner函式#3)SQL原始碼函式
- PostgreSQL 原始碼解讀(43)- 查詢語句#28(query_planner函式#5)SQL原始碼函式
- PostgreSQL 原始碼解讀(45)- 查詢語句#30(query_planner函式#6)SQL原始碼函式