題目描述:
給定N個座標Point,每個Point例項有x-座標和y-座標。題目要求函式返回離原點最近的k個座標。
思路:
這道題和找第k大或第k小的題目的思路基本相同,就是在遍歷所有Point的同時,維護一個size為k的max—heap,一旦發現size為k+1,我們就把max-heap頭上最大的元素移出heap,因為這裡的heap是max-heap,所以heap頭部的元素比heap裡其他的元素都要比heap裡的其他元素離原點遠。這樣使得heap裡的元素是到目前為止裡原點最近的k的點。
複雜度分析
時間複雜度:O(NlogK)
因為需要遍歷所有元素,每次遍歷一個元素的同時,還要在耗費logk的時間來維護heap。
空間複雜度: O(K)
heap的size 是k
// Example program
#include <iostream>
#include <string>
#include <algorithm>
#include <queue>
#include <math.h>
#include <vector>
using namespace std;
struct Point {
double x;
double y;
Point(double a, double b) {
x = a;
y = b;
}
};
double getDistance(Point a, Point b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
typedef bool (*comp)(Point, Point);
Point global_origin = Point(0,0);
bool compare(Point a, Point b)
{
return (getDistance(a, global_origin)< getDistance(b, global_origin));
}
vector<Point> Solution(vector<Point> &array, Point origin, int k) {
global_origin = Point(origin.x, origin.y);
priority_queue<Point, std::vector<Point>, comp> pq(compare);
vector<Point> ret;
for (int i = 0; i < array.size(); i++) {
Point p = array[i];
pq.push(p);
if (pq.size() > k)
pq.pop();
}
int index = 0;
while (!pq.empty()){
Point p = pq.top();
ret.push_back(p);
pq.pop();
}
return ret;
}
int main()
{
Point p1 = Point(4.5, 6.0);
Point p2 = Point(4.0, 7.0);
Point p3 = Point(4.0, 4.0);
Point p4 = Point(2.0, 5.0);
Point p5 = Point(1.0, 1.0);
vector<Point> array = {p1, p2, p3, p4, p5};
int k = 2;
Point origin = Point(0.0, 0.0);
vector<Point> ans = Solution(array, origin, k);
for (int i = 0; i < ans.size(); i++) {
cout << i << ": " << ans[i].x << "," << ans[i].y << endl;
}
//cout << getDistance(p1, p2) << endl;
}