題意
Sol
首先不難想到一個dp
設(f[i][j])表示選了(i)個嚴格遞增的數最大的數為(j)的方案數
轉移的時候判斷一下最後一個位置是否是(j)
[f[i][j] = f[i][j – 1] + f[i – 1][j – 1] * j]
for(int i = 0; i <= A; i++) f[0][i] = 1;
for(int i = 1; i <= N; i++)
for(int j = 1; j <= A; j++)
f[i][j] = add(f[i][j - 1], mul(f[i - 1][j - 1], j));
cout << mul(f[N][A], fac[N]);
發現還是不好搞,把轉移拆開
(f[i][j] = sum_{k = 0}^{j – 1} f[i – 1][k] * (k + 1))
這個轉移就非常有意思了
我們如果把(i)看成列,(k)看成行,那麼轉移的時候實際上就是先對第(k)行乘上一個係數(k),然後再求和
如果我們把第(i – 1)列看成一個(t)次多項式,顯然第(i)列是一個(t+2)次多項式(求和算一次,乘係數算一次)
這樣的話第(i)列就是一個最高(2i+1)次多項式
插一插就好了
// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 10001;
int A, N, Lim, mod, f[501][MAXN], fac[MAXN], y[MAXN];
int add(int x, int y) {
if(x + y < 0) return x + y + mod;
return x + y >= mod ? x + y - mod : x + y;
}
void add2(int &x, int y) {
if(x + y < 0) x = (x + y + mod);
else x = (x + y >= mod ? x + y - mod : x + y);
}
int mul(int x, int y) {
return 1ll * x * y % mod;
}
int fp(int a, int p) {
int base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
int Large(int *y, int k) {
static int x[MAXN], ans = 0;
for(int i = 1; i <= Lim; i++) x[i] = i;
for(int i = 0; i <= Lim; i++) {
int up = y[i], down = 1;
for(int j = 0; j <= Lim; j++) {
if(i == j) continue;
up = mul(up, add(k, -x[j]));
down = mul(down, add(x[i], -x[j]));
}
add2(ans, mul(up, fp(down, mod - 2)));
}
return ans;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("a.in", "r", stdin);
// freopen("a.out", "w", stdout);
#endif
cin >> A >> N >> mod; Lim = 2 * N + 1;
fac[0] = 1; for(int i = 1; i <= N; i++) fac[i] = mul(i, fac[i - 1]);
for(int i = 0; i <= Lim; i++) f[0][i] = 1;
for(int i = 1; i <= N; i++) {
for(int j = 1; j <= Lim; j++) {
f[i][j] = add(f[i][j - 1], mul(f[i - 1][j - 1], j));
}
}
for(int i = 0; i <= Lim; i++) y[i] = f[N][i];
cout << mul(Large(y, A), fac[N]);
return 0;
}