fsl的feat軟體分包使用筆記

weixin_34119545發表於2014-04-10

introduction:

 

1. feat 是一種基於模型的fmri資料分析方法。

2. feat 首先使用順手,至少看起來,比spm漂亮多了。 feat是按照正常人的使用方法去設計的。 spm 由於matlab的gui庫的限制,誒,不說了。還是自己能力不夠啊。不夠熟練啊。

3. feat 對於單被試,也就是individual的情形,大概需要5到10分鐘,能跑出結果,最後,結果在網頁進行顯示。直接顯示了啟用圖,顯示了時間序列和model的擬合情況。

4. feat是基於glm而設計的,也就是基於一種多元迴歸的方法。glm的實現,通過film軟體包,而film軟體包,較之於spm,有一個prewhiten的過程。

5. feat利用flirt進行配準。flirt配準,使用二級配準方式,t2配準到t1,T1再配準到mni152。

 

guide:

 

1.在執行feat執行,資料要做這樣的預處理:

  1.1 結構影像做bet操作,腦殼抽取操作。

2. 選擇4D功能影像.nii資料。選擇好之後,4d資料的時間維數會自動在total volumes中顯示出來。注意一點,就是在feat中,或者說在fsl中,第一個volume的下標值是0,不是1.

3. 然後在data 皮膚(stab)中,還有幾個引數需要設定,delete volumes,也就是最前面有多少volumes需要discard丟棄;

                  TR(s);

                  高通濾波時間 high pass  filter  cutoff(s);

                  directory 輸出目錄;

 

4. 在stats 皮膚(stab)中,建立模型以及相應的限制contrast。將所有model設定完成之後,可以將所有settings儲存到setup 檔案中,比如design.fsf中。以後,就可以直接通過load這樣的setup file,不需要重複設定了。

5.feat的全分析full analysis步驟包括:pre-stats,stats,post-stats。

6.Brain/background threshold 對影像的灰度值進行歸一化,然後,背景顏色所佔的灰度range。

 

pre-stat:

 

  去腦殼:By default BET brain extraction is applied to create a brain mask from the first volume in the FMRI data. This is normally better than simple intensity-based thresholding for getting rid of unwanted voxels in FMRI data. Note that here, BET is setup to run in a quite liberal way so that there is very little danger of removing valid brain voxels. If the field-of-view of the image (in any direction) is less than 30mm then BET is turned off by default. Note that, with respect to any structural image(s) used in FEAT registration, you need to have already run BET on those before running FEAT.

  空間平滑:去除噪聲,

  Spatial smoothing is carried out on each volume of the FMRI data set separately. This is intended to reduce noise without reducing valid activation; this is successful as long as the underlying activation area is larger than the extent of the smoothing. Thus if you are looking for very small activation areas then you should maybe reduce smoothing from the default of 5mm, and if you are looking for larger areas, you can increase it, maybe to 10 or even 15mm. To turn off spatial smoothing simply set FWHM to 0.

  

  灰度值歸一化:這一步,對於高層分析是有必要的。Intensity normalisation forces every FMRI volume to have the same mean intensity. For each volume it calculates the mean intensity and then scales the intensity across the whole volume so that the global mean becomes a preset constant. This step is normally discouraged - hence is turned off by default. When this step is not carried out, the whole 4D data set is still normalised by a single scaling factor ("grand mean scaling") - each volume is scaled by the same amount. This is so that higher-level analyses are valid.

   是否開啟MELODIC選項:開啟ica選項,可能會檢測到一些方法檢查不到的偽影等等。ica對於去除結構性噪聲,是可以做文章的。

  The MELODIC option runs the ICA (Independent Component Analysis) tool in FSL. We recommend that you run this, in order to gain insight into unexpected artefacts or activation in your data.

  

stats:

 

  Use FILM prewhitening:開啟film(fsl的glm實現包)的與白化功能,使得統計結果更有效。

  在glm模型中,去除頭動協變數:spm中的方法是,將在頭動矯正估計得到的引數,作為設計矩陣的協變數,進行迴歸去除。然而,fsl中,認為這種方法的有效性值得懷疑,所以採用了ica進行頭動偽影的識別和去除。

 

  

  

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

參考:http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide

相關文章