GitHub專案:自然語言處理專案的相關乾貨整理
自然語言處理(NLP)是電腦科學,人工智慧,語言學關注計算機和人類(自然)語言之間的相互作用的領域。本文作者為自然語言處理NLP初學者整理了一份龐大的自然語言處理專案領域的概覽,包括了很多人工智慧應用程式。選取的參考文獻與資料都側重於最新的深度學習研究成果。這些自然語言處理專案資源能為想要深入鑽研一個自然語言處理NLP任務的人們提供一個良好的開端。
自然語言處理專案的相關乾貨整理:
指代消解
論文自動評分
- 論文:Automatic Text Scoring Using Neural Networks(使用神經網路的自動文字評分):https://arxiv.org/abs/1606.04289
- 論文:A Neural Approach to Automated Essay Scoring(一種自動將論文評分的神經學方法):http://www.aclweb.org/old_anthology/D/D16/D16-1193.pdf
- 挑戰:Kaggle:The Hewlett Foundation: Automated Essay Scoring(Kaggle:The Hewlett Foundation:論文自動評分系統):https://www.kaggle.com/c/asap-aes
- 專案:Enhanced AI Scoring Engine(增強的人工智慧得分引擎):https://github.com/edx/ease
自動語音識別
- 維基百科: 語言識別:https://en.wikipedia.org/wiki/Speech_recognition
- 論文:DeepSpeech 2: End-to-End Speech Recognition in English and Mandarin(深度語音2:用英語和普通話進行端對端語音識別):https://arxiv.org/abs/1512.02595
- 論文:WaveNet:A Generative Model for Raw Audio(WaveNet:原始音訊的生成模型):https://arxiv.org/abs/1609.03499
- 專案:A TensorFlow implementation of Baidu’s Deep Speech architecture(百度深度語音架構的一個TensorFlow實現:https://github.com/mozilla/DeepSpeech
- 專案:Speech-to-Text-WaveNet: End-to-end sentence level English speech recognition using DeepMind’s WaveNet(Speech-to-Text-WaveNet: 使用DeepMind的WaveNet,對端到端句子的英語水平語音識別):https://github.com/buriburisuri/speech-to-text-wavenet
- 挑戰:The 5th CHiME Speech Separation and Recognition Challenge(第五屆CHiME語音的分離和識別挑戰):http://spandh.dcs.shef.ac.uk/chime_challenge/
- 資料:The 5thCHiME Speech Separation and Recognition Challenge(第五屆CHiME語音的分離和識別挑戰):http://spandh.dcs.shef.ac.uk/chime_challenge/download.html
- 資料:CSTRVCTK Corpus :http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
- 資料:LibriSpeech ASR corpus:http://www.openslr.org/12/
- 資料:Switchboard-1 Telephone Speech Corpus:https://catalog.ldc.upenn.edu/ldc97s62
- 資料:TED-LIUM Corpus:http://www-lium.univ-lemans.fr/en/content/ted-lium-corpus
自動摘要
- 維基百科:自動摘要:https://en.wikipedia.org/wiki/Automatic_summarization
- 書籍:Automatic Text Summarization(自動本文摘要):https://www.amazon.com/Automatic-Text-Summarization-Juan-Manuel-Torres-Moreno/dp/1848216688/ref=sr_1_1?s=books&ie=UTF8&qid=1507782304&sr=1-1&keywords=Automatic+Text+Summarization
- 論文:Text Summarization Using Neural Networks(使用神經網路進行文字摘要):http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.823.8025&rep=rep1&type=pdf
- 論文:Ranking with Recursive Neural Networks and Its Application to Multi-DocumentSummarization(使用遞迴神經網路及其應用程式對多文件摘要進行排序):https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9414/9520
- 資料:Text Analytics Conferences(文字分析會議):https://tac.nist.gov/data/index.html
- 資料:Document Understanding Conferences(文書理解會議):http://www-nlpir.nist.gov/projects/duc/data.html
共指消解
- 資訊:共指消解:https://nlp.stanford.edu/projects/coref.shtml
- 論文:Deep Reinforcement Learning for Mention-Ranking Coreference Models(對Mention-Ranking的共指模型進行深度強化學習:https://arxiv.org/abs/1609.08667
- 論文:Improving Coreference Resolution by Learning Entity-Level Distributed Representations(通過學習實體級分散式表示來改善相關的解決方案):https://arxiv.org/abs/1606.01323
- 挑戰:CoNLL 2012 Shared Task: Modeling Multilingual Unrestricted Coreference in OntoNotes(CoNLL 2012共享任務:在OntoNotes中對多語言的不受限制的共指進行建模):http://conll.cemantix.org/2012/task-description.html
- 挑戰:CoNLL 2011 Shared Task: Modeling Unrestricted Coreference in OntoNotes(CoNLL 2011共享任務:在OntoNotes中對多語言的不受限制的共指進行建模):http://conll.cemantix.org/2011/task-description.html
語法錯誤校正
- 論文:Neural Network Translation Models for Grammatical Error Correction(語法錯誤校正的神經網路翻譯模型):https://arxiv.org/abs/1606.00189
- 挑戰:CoNLL 2013 Shared Task: Grammatical Error Correction(CoNLL 2013共享任務:語法錯誤校正):http://www.comp.nus.edu.sg/~nlp/conll13st.html
- 挑戰:CoNLL 2014Shared Task: Grammatical Error Correction(CoNLL 2014共享任務:語法錯誤校正):http://www.comp.nus.edu.sg/~nlp/conll14st.html
- 資料:NUSNon-commercial research/trial corpus license:http://www.comp.nus.edu.sg/~nlp/conll14st/nucle_license.pdf
- 資料:Lang-8 Learner Corpora:http://cl.naist.jp/nldata/lang-8/
- 資料:Cornell Movie–Dialogs Corpus:http://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
- 專案:Deep Text Corrector(深度文字校正器):https://github.com/atpaino/deep-text-corrector
- 產品:deep grammar:http://deepgrammar.com/
字素轉換到音素
- 論文:Grapheme-to-Phoneme Models for (Almost) Any Language(適合(幾乎)任何語言的字素到音素的模型):https://pdfs.semanticscholar.org/b9c8/fef9b6f16b92c6859f6106524fdb053e9577.pdf
- 論文:Polyglot Neural Language Models: A Case Study in Cross-Lingual Phonetic Representation Learning(多語言神經語言模型:跨語語音表達學習的案例研究):https://arxiv.org/pdf/1605.03832.pdf
- 論文:Multi task Sequence-to-Sequence Models for Grapheme-to-Phoneme Conversion(多工序列到序列的字素到音素轉換的模型):https://pdfs.semanticscholar.org/26d0/09959fa2b2e18cddb5783493738a1c1ede2f.pdf
- 專案:Sequence-to-Sequence G2P toolkit(序列到序列G2P工具包):https://github.com/cmusphinx/g2p-seq2seq
- 資料:Multilingual Pronunciation Data(多語種發音資料):https://drive.google.com/drive/folders/0B7R_gATfZJ2aWkpSWHpXUklWUmM
語種識別
- 維基百科: 語種識別:https://en.wikipedia.org/wiki/Language_identification
- 論文:AUTOMATIC LANGUAGE IDENTIFICATION USING DEEP NEURAL NETWORKS(使用深度神經網路的自動語言識別):https://repositorio.uam.es/bitstream/handle/10486/666848/automatic_lopez-moreno_ICASSP_2014_ps.pdf?sequence=1
- 挑戰: 2015 Language Recognition Evaluation(2015語言識別評估):https://www.nist.gov/itl/iad/mig/2015-language-recognition-evaluation
語言建模
- 維基百科:語言模型:https://en.wikipedia.org/wiki/Language_model
- 工具包: KenLM Language Model Toolkit(KenLM語言模型工具包):http://kheafield.com/code/kenlm/
- 論文:Distributed Representations of Words and Phrases and their Compositionality(詞彙和短語的分佈表示及其組合性):http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
- 論文:Character-Aware Neural Language Models(Character-Aware神經語言模型):https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewFile/12489/12017
- 資料: Penn Treebank :https://github.com/townie/PTB-dataset-from-Tomas-Mikolov-s-webpage/tree/master/data
詞形還原
- 維基百科:詞形還原:https://en.wikipedia.org/wiki/Lemmatisation
- 工具包:WordNet Lemmatizer:http://www.nltk.org/api/nltk.stem.html#nltk.stem.wordnet.WordNetLemmatizer.lemmatize
- 資料:Treebank-3:https://catalog.ldc.upenn.edu/ldc99t42
脣語辨別
- 維基百科:脣讀法:https://en.wikipedia.org/wiki/Lip_reading
- 論文:Lip Reading Sentences in the Wild (在野外讀懂脣語):https://arxiv.org/abs/1611.05358
- 論文:3D Convolutional Neural Networks for Cross Audio-Visual Matching Recognition(交叉視聽匹配識別的3D卷積神經網路):https://arxiv.org/abs/1706.05739
- 專案: Lip Reading – Cross Audio-Visual Recognition using 3D Convolutional Neural Networks(脣讀法—使用3D卷積神經網路的交叉視聽識別:https://github.com/astorfi/lip-reading-deeplearning
- 資料: The GRID audiovisual sentence corpus:http://spandh.dcs.shef.ac.uk/gridcorpus/
機器翻譯
- 論文:Neural Machine Translation by Jointly Learning to Align and Translate(通過共同學習來調整和翻譯神經機器翻譯):https://arxiv.org/abs/1409.0473
- 論文:Neural Machine Translation in Linear Tim(線上性時間中的神經機器翻譯):https://arxiv.org/abs/1610.10099
- 挑戰: ACL2014 NINTH WORKSHOP ON STATISTICAL MACHINE TRANSLATION(ACL2014第九屆統計機器翻譯研討會):http://www.statmt.org/wmt14/translation-task.html#download
- 資料:OpenSubtitles2016:http://opus.lingfil.uu.se/OpenSubtitles2016.php
- 資料: WIT3:Web Inventory of Transcribed and Translated Talks:https://wit3.fbk.eu/
- 資料: The QCRI Educational Domain (QED) Corpus:http://alt.qcri.org/resources/qedcorpus/
命名實體識別
- 維基百科:命名實體識別:https://en.wikipedia.org/wiki/Named-entity_recognition
- 論文:Neural Architectures for Named Entity Recognition(命名實體識別的神經結構):https://arxiv.org/abs/1603.01360
- 專案: OSU Twitter NLP Tool:https://github.com/aritter/twitter_nlp
- 挑戰: Named Entity Recognition in Twitter(在推特上被命名的實體識別):https://noisy-text.github.io/2016/ner-shared-task.html
- 資料:CoNLL-2002 NER corpus:https://github.com/teropa/nlp/tree/master/resources/corpora/conll2002
- 資料:CoNLL-2003 NER corpus:https://github.com/synalp/NER/tree/master/corpus/CoNLL-2003
釋義檢測
- 論文:Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection(動態池和展開遞迴自動編碼器的釋義檢測):http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.650.7199&rep=rep1&type=pdf
- 專案:Paralex: Paraphrase-Driven Learning for Open Question Answering(Paralex:釋義驅動學習的開放問答):http://knowitall.cs.washington.edu/paralex/
- 資料:Microsoft Research Paraphrase Corpus:https://www.microsoft.com/en-us/download/details.aspx?id=52398
- 資料:Microsoft Research Video Description Corpus :https://www.microsoft.com/en-us/download/details.aspx?id=52422&from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fdownloads%2F38cf15fd-b8df-477e-a4e4-a4680caa75af%2F
- 資料: Pascal Dataset:http://nlp.cs.illinois.edu/HockenmaierGroup/pascal-sentences/index.html
- 資料:Flicker Dataset:http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html
- 資料: TheSICK data set:http://clic.cimec.unitn.it/composes/sick.html
- 資料: PPDB:The Paraphrase Database:http://www.cis.upenn.edu/~ccb/ppdb/
- 資料:WikiAnswers Paraphrase Corpus:http://knowitall.cs.washington.edu/paralex/wikianswers-paraphrases-1.0.tar.gz
語法分析
- 維基百科:語法分析:https://en.wikipedia.org/wiki/Parsing
- 工具包:The Stanford Parser: A statistical parser:https://nlp.stanford.edu/software/lex-parser.shtml
- 工具包: spaCyparser:https://spacy.io/docs/usage/dependency-parse
- 論文:A fastand accurate dependency parser using neural networks(快速而準確地使用神經網路的依賴解析器):http://www.aclweb.org/anthology/D14-1082
- 挑戰:CoNLL2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies(CoNLL2017共享任務:從原始文字到通用依賴項的多語言解析):http://universaldependencies.org/conll17/
- 挑戰:CoNLL2016 Shared Task: Multilingual Shallow Discourse Parsing(CoNLL2016共享任務:多語言的淺會話解析):http://www.cs.brandeis.edu/~clp/conll16st/
詞性標記
- 維基百科:詞性標記:https://en.wikipedia.org/wiki/Part-of-speech_tagging
- 論文:Unsupervised Part-Of-Speech Tagging with Anchor Hidden Markov Models(有Anchor Hidden Markov模型的非監督性的詞性標記):https://transacl.org/ojs/index.php/tacl/article/viewFile/837/192
- 資料:Treebank-3:https://catalog.ldc.upenn.edu/ldc99t42
- 工具包:nltk.tag package:http://www.nltk.org/api/nltk.tag.html
拼音與中文轉換
- 論文:Neural Network Language Model for Chinese Pinyin Input Method Engine(中文拼音輸入法引擎的神經網路語言模型):http://aclweb.org/anthology/Y15-1052
- 專案:Neural Chinese Transliterator:https://github.com/Kyubyong/neural_chinese_transliterator
問答系統
- 維基百科:問答系統:https://en.wikipedia.org/wiki/Question_answering
- 論文:Ask Me Anything: Dynamic Memory Networks for Natural Language Processing(自然語言處理的動態記憶體網路):http://www.thespermwhale.com/jaseweston/ram/papers/paper_21.pdf
- 論文:Dynamic Memory Networks for Visual and Textual Question Answering(用於視覺和文字的問答系統的動態記憶網路):http://proceedings.mlr.press/v48/xiong16.pdf
- 挑戰:TREC Question Answering Task(TREC問答系統任務):http://trec.nist.gov/data/qamain.html
- 挑戰:SemEval-2017 Task 3: Community Question Answering:http://alt.qcri.org/semeval2017/task3/
- 資料:MSMARCO: Microsoft MAchine Reading COmprehension Dataset(MSMARCO:微軟機器閱讀理解資料集)http://www.msmarco.org/
- 資料:Maluuba NewsQA:https://github.com/Maluuba/newsqa
- 資料:SQuAD:100,000+ Questions for Machine Comprehension of Text(SQuAD:100,000+個文字的機器理解的問題):https://rajpurkar.github.io/SQuAD-explorer/
- 資料:Graph Questions: A Characteristic-rich Question Answering Dataset(圖形問題:一個特徵豐富的問題回答資料集):https://github.com/ysu1989/GraphQuestions
- 資料: Story Cloze Test and ROC Stories Corpora:http://cs.rochester.edu/nlp/rocstories/
- 資料:Microsoft Research WikiQA Corpus:https://www.microsoft.com/en-us/download/details.aspx?id=52419&from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fdownloads%2F4495da01-db8c-4041-a7f6-7984a4f6a905%2Fdefault.aspx
- 資料:DeepMind Q&A Dataset:http://cs.nyu.edu/~kcho/DMQA/
- 資料: QASent:http://cs.stanford.edu/people/mengqiu/data/qg-emnlp07-data.tgz
關係提取
- 維基百科:關係提取:https://en.wikipedia.org/wiki/Relationship_extraction
- 論文:A deep learning approach for relationship extraction from interaction context in social manufacturing paradigm(一種從社會生產範例的互動情境中提取關係深度學習的方法):http://www.sciencedirect.com/science/article/pii/S0950705116001210
語義角色標記
- 維基百科:語義角色標記:https://en.wikipedia.org/wiki/Semantic_role_labeling
- 書籍:Semantic Role Labeling(語義角色標記):https://www.amazon.com/Semantic-Labeling-Synthesis-Lectures-Technologies/dp/1598298313/ref=sr_1_1?s=books&ie=UTF8&qid=1507776173&sr=1-1&keywords=Semantic+Role+Labeling
- 論文:End-to-end Learning of Semantic Role Labeling Using Recurrent Neural Networks(使用迴圈神經網路對語義角色標籤進行端到端學習):http://www.aclweb.org/anthology/P/P15/P15-1109.pdf
- 論文:Neural Semantic Role Labeling with Dependency Path Embeddings(有著依賴路徑嵌入的神經語義角色標記):https://arxiv.org/abs/1605.07515
- 挑戰:CoNLL-2005 Shared Task: Semantic Role Labeling(CoNLL-2005共享任務:語義角色標記):http://www.cs.upc.edu/~srlconll/st05/st05.html
- 挑戰:CoNLL-2004 Shared Task: Semantic Role Labeling(CoNLL-2004共享任務:語義角色標記):http://www.cs.upc.edu/~srlconll/st04/st04.html
- 工具包:Illinois Semantic Role Labeler(SRL):http://cogcomp.org/page/software_view/SRL
- 資料:CoNLL-2005 Shared Task: Semantic Role Labeling(CoNLL-2005共享任務:語義角色標記):http://www.cs.upc.edu/~srlconll/soft.html
語句邊界消歧
- 維基百科:語句邊界消歧:https://en.wikipedia.org/wiki/Sentence_boundary_disambiguation
- 論文:A Quantitative and Qualitative Evaluation of Sentence Boundary Detection for theClinical Domain(對臨床領域的語句邊界檢測進行定量和定性的評估):https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5001746/
- 工具包: NLTK Tokenizers:http://www.nltk.org/_modules/nltk/tokenize.html
- 資料: The British National Corpus:http://www.natcorp.ox.ac.uk/
- 資料:Switchboard-1 Telephone Speech Corpus:https://catalog.ldc.upenn.edu/ldc97s62
情緒分析
- 維基百科:情緒分析:https://en.wikipedia.org/wiki/Sentiment_analysis
- 資訊:Awesome Sentiment Analysis(了不起的情緒分析):https://github.com/xiamx/awesome-sentiment-analysis
- 挑戰:Kaggle: UMICH SI650 – Sentiment Classification(Kaggle: UMICH SI650 – 情緒分類):https://www.kaggle.com/c/si650winter11#description
- 挑戰:SemEval-2017 Task 4: Sentiment Analysis in Twitter(SemEval-2017任務4:推特上的情緒分析):http://alt.qcri.org/semeval2017/task4/
- 專案:SenticNet:http://sentic.net/about/
- 資料:Multi-Domain Sentiment Dataset(version2.0):http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
- 資料:Stanford Sentiment Treebank:https://nlp.stanford.edu/sentiment/code.html
- 資料:Twitter Sentiment Corpus:http://www.sananalytics.com/lab/twitter-sentiment/
- 資料:Twitter Sentiment Analysis Training Corpus:http://thinknook.com/twitter-sentiment-analysis-training-corpus-dataset-2012-09-22/
源分離
- 維基百科:源分離:https://en.wikipedia.org/wiki/Source_separation
- 論文:From Blind to Guided Audio Source Separation(從盲目到有指導性的音訊源分離):https://hal-univ-rennes1.archives-ouvertes.fr/hal-00922378/document
- 論文:Joint Optimization of Masks and Deep Recurrent Neural Networks for Monaural Source Separation (對單聲道分離的掩膜和深層迴圈神經網路的聯合優化):https://arxiv.org/abs/1502.04149
- 挑戰:Signal Separation Evaluation Campaign(訊號分離評估活動):https://sisec.inria.fr/
- 挑戰: CHiME Speech Separation and Recognition Challenge(CHiME語音分離和識別的挑戰):http://spandh.dcs.shef.ac.uk/chime_challenge/
說話者識別
- 維基百科:說話者識別:https://en.wikipedia.org/wiki/Speaker_recognition
- 論文:A NOVEL SCHEME FOR SPEAKER RECOGNITION USING A PHONETICALLY-AWARE DEEP NEURAL NETWORK(一種使用語音識別的深度神經網路的新方案):https://pdfs.semanticscholar.org/204a/ff8e21791c0a4113a3f75d0e6424a003c321.pdf
- 論文:DEEP NEURAL NETWORKS FOR SMALL FOOTPRINT TEXT-DEPENDENT SPEAKER VERIFICATION(深度神經網路,用於小範圍的文字依賴的說話者驗證):https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/41939.pdf
- 挑戰: NIST Speaker Recognition Evaluation(NIST說話者識別評價):https://www.nist.gov/itl/iad/mig/speaker-recognition
語音分段
- 維基百科:語音分段:https://en.wikipedia.org/wiki/Speech_segmentation
- 論文:Word Segmentation by 8-Month-Olds: When Speech Cues Count More Than Statistics(8個月大嬰兒的單詞分段:當語音提示比統計數字更重要時):http://www.utm.toronto.edu/infant-child-centre/sites/files/infant-child-centre/public/shared/elizabeth-johnson/Johnson_Jusczyk.pdf
- 論文:Unsupervised Word Segmentation and Lexicon Discovery Using Acoustic Word Embeddings(不受監督的單詞分割和使用聲學詞嵌入的詞彙發現):https://arxiv.org/abs/1603.02845
- 資料:CALLHOME Spanish Speech:https://catalog.ldc.upenn.edu/ldc96s35
語音合成
- 維基百科:語音合成:https://en.wikipedia.org/wiki/Speech_synthesis
- 論文:WaveNet:A Generative Model for Raw Audio(WaveNet:原始音訊的生成模型):https://arxiv.org/abs/1609.03499
- 論文:Tacotron:Towards End-to-End Speech Synthesis(Tacotron:對端到端的語音合成):https://arxiv.org/abs/1703.10135
- 資料: The World English Bible:https://github.com/Kyubyong/tacotron
- 資料: LJ Speech Dataset:https://github.com/keithito/tacotron
- 資料: Lessac Data:http://www.cstr.ed.ac.uk/projects/blizzard/2011/lessac_blizzard2011/
- 挑戰:Blizzard Challenge 2017:https://synsig.org/index.php/Blizzard_Challenge_2017
- 專案: The Festvox project:http://www.festvox.org/index.html
- 工具包:Merlin: The Neural Network (NN) based Speech Synthesis System(Merlin:基於神經網路的語音合成系統):https://github.com/CSTR-Edinburgh/merlin
語音增強
- 維基百科:語音增強:https://en.wikipedia.org/wiki/Speech_enhancement
- 書籍: Speech enhancement: theory and practice(語音增強:理論與實踐):https://www.amazon.com/Speech-Enhancement-Theory-Practice-Second/dp/1466504218/ref=sr_1_1?ie=UTF8&qid=1507874199&sr=8-1&keywords=Speech+enhancement%3A+theory+and+practice
- 論文 An Experimental Study on Speech Enhancement Based on Deep Neural Network(一項基於深度神經網路的語音增強實驗):http://staff.ustc.edu.cn/~jundu/Speech%20signal%20processing/publications/SPL2014_Xu.pdf
- 論文: A Regression Approach to Speech Enhancement Based on Deep Neural Networks(一種基於深度神經網路的語音增強的迴歸方法):https://www.researchgate.net/profile/Yong_Xu63/publication/272436458_A_Regression_Approach_to_Speech_Enhancement_Based_on_Deep_Neural_Networks/links/57fdfdda08aeaf819a5bdd97.pdf
- 論文:Speech Enhancement Based on Deep Denoising Autoencoder(基於深度降噪自編碼的語音增強):https://www.researchgate.net/profile/Yu_Tsao/publication/283600839_Speech_enhancement_based_on_deep_denoising_Auto-Encoder/links/577b486108ae213761c9c7f8/Speech-enhancement-based-on-deep-denoising-Auto-Encoder.pdf
詞幹提取
- 維基百科:詞幹提取:https://en.wikipedia.org/wiki/Stemming
- 論文: A BACKPROPAGATION NEURAL NETWORK TO IMPROVE ARABIC STEMMING(一個反向傳播的神經網路,用來改善阿拉伯語的詞幹提取):http://www.jatit.org/volumes/Vol82No3/7Vol82No3.pdf
- 工具包: NLTK Stemmers:http://www.nltk.org/howto/stem.html
術語提取
- 維基百科:術語提取:https://en.wikipedia.org/wiki/Terminology_extraction
- 論文: Neural Attention Models for Sequence Classification: Analysis and Application to KeyTerm Extraction and Dialogue Act Detection(序列分類的神經提示模型:分析和應用於關鍵詞提取和對話法檢測):https://arxiv.org/pdf/1604.00077.pdf
文字簡化
- 維基百科:文字簡化:https://en.wikipedia.org/wiki/Text_simplification
- 論文:Aligning Sentences from Standard Wikipedia to Simple Wikipedia(調整句子,從標準的維基百科到簡單的維基百科):https://ssli.ee.washington.edu/~hannaneh/papers/simplification.pdf
- 論文:Problems in Current Text Simplification Research: New Data Can Help(當前文字簡化研究中的問題:可提供幫助的新資料):https://pdfs.semanticscholar.org/2b8d/a013966c0c5e020ebc842d49d8ed166c8783.pdf
- 資料:Newsela Data:https://newsela.com/data/
文字蘊涵
- 維基百科:文字蘊含:https://en.wikipedia.org/wiki/Textual_entailment
- 專案:Textual Entailment with TensorFlow(文字蘊含與TensorFlow):https://github.com/Steven-Hewitt/Entailment-with-Tensorflow
- 競賽:SemEval-2013 Task 7: The Joint Student Response Analysis and 8th Recognizing Textual Entailment Challenge(SemEval-2013任務7:聯合學生反應分析和第8屆認知文字蘊含挑戰):https://www.cs.york.ac.uk/semeval-2013/task7.html
音譯
- 維基百科:音譯:https://en.wikipedia.org/wiki/Transliteration
- 論文:A Deep Learning Approach to Machine Transliteration(一個機器音譯的深度學習方法):https://pdfs.semanticscholar.org/54f1/23122b8dd1f1d3067cf348cfea1276914377.pdf
- 專案:Neural Japanese Transliteration—can you do better than SwiftKey™ Keyboard?(神經日語音譯:你能比SwiftKey鍵盤做得更好嗎?):https://github.com/Kyubyong/neural_japanese_transliterator
詞嵌入
- 維基百科:詞嵌入:https://en.wikipedia.org/wiki/Word_embedding
- 工具包:Gensim: word2vec:https://radimrehurek.com/gensim/models/word2vec.html
- 工具包:fastText:https://github.com/facebookresearch/fastText
- 工具包:GloVe:Global Vectors for Word Representation:https://nlp.stanford.edu/projects/glove/
- 資訊:Where to get a pretrained model?(哪裡能夠獲得一個預先訓練的模型?):https://github.com/3Top/word2vec-api
- 專案:Pre-trained word vectors of 30+ languages(30多種語言的預先訓練的詞向量):https://github.com/Kyubyong/wordvectors
- 專案:Polyglot: Distributed word representations for multilingual NLP(Polyglot:多語言NLP的分散式詞彙表徵):https://sites.google.com/site/rmyeid/projects/polyglot
詞彙預測
- 資訊:What is Word Prediction?(什麼是詞彙預測?):http://www2.edc.org/ncip/library/wp/what_is.htm
- 論文: The prediction of character based on recurrent neural network language model(基於迴圈神經網路語言模型的字元預測):http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7960065
- 論文: An Embedded Deep Learning based Word Prediction(一個基於深度學習的詞彙預測):https://arxiv.org/abs/1707.01662
- 論文:Evaluating Word Prediction: Framing Keystroke Savings(評估單詞預測:框擊鍵儲存):http://aclweb.org/anthology/P08-2066
- 資料:An Embedded Deep Learning based Word Prediction(一個基於深度學習的詞彙預測):https://github.com/Meinwerk/WordPrediction/master.zip
- 專案: Word Prediction using Convolutional Neural Networks—can you do better than iPhone™ Keyboard?(使用卷積神經網路的詞彙預測——你能比iPhone鍵盤做得更好嗎?):https://github.com/Kyubyong/word_prediction
詞分割
- 論文: Neural Word Segmentation Learning for Chinese(中文的神經詞分割學習):https://arxiv.org/abs/1606.04300
- 專案:Convolutional neural network for Chinese word segmentation(中文的詞分割的卷積神經網路):https://github.com/chqiwang/convseg
- 工具包:Stanford Word Segmenter:https://nlp.stanford.edu/software/segmenter.html
- 工具包: NLTK Tokenizers:http://www.nltk.org/_modules/nltk/tokenize.html
詞義消歧
- 維基百科:詞義消歧:https://en.wikipedia.org/wiki/Word-sense_disambiguation
- 論文:Train-O-Matic: Large-Scale Supervised Word Sense Disambiguation in Multiple Languages without Manual Training Data(Train-O-Matic:在沒有人工訓練資料的情況下,在多種語言中大規模的監督詞義消歧):http://www.aclweb.org/anthology/D17-1008
- 資料:Train-O-Matic Data:http://trainomatic.org/data/train-o-matic-data.zip
- 資料:BabelNet:http://babelnet.org/
原專案地址:https://github.com/Kyubyong/nlp_tasks#speech-segmentation
相關文章
- 2023nlp影片教程大全 NLP自然語言處理教程 自然語言處理NLP從入門到專案實戰自然語言處理
- 目前常用的自然語言處理開源專案/開發包大彙總自然語言處理
- 專案常用JS方法封裝(三) [ 字串相關處理 ]JS封裝字串
- GitHub 上優質專案整理Github
- 專業貼:100+個自然語言處理資料集自然語言處理
- 專案常用JS方法封裝(四) [ 陣列相關處理 ]JS封裝陣列
- 專案常用JS方法封裝(二) [ 時間相關處理 ]JS封裝
- 自然語言處理(NLP)系列(一)——自然語言理解(NLU)自然語言處理
- 自然語言處理NLP(四)自然語言處理
- 自然語言處理(NLP)概述自然語言處理
- HanLP 自然語言處理 for nodejsHanLP自然語言處理NodeJS
- Spring Cloud相關專案SpringCloud
- 專案內容相關
- 自然語言處理的最佳實踐自然語言處理
- 乾貨!什麼是自然語言分析(NLA)
- [譯] 自然語言處理真是有趣!自然語言處理
- 自然語言處理:分詞方法自然語言處理分詞
- 用c語言處理檔案C語言
- Go 語言處理 yaml 檔案GoYAML
- Bootstrap相關專案推薦boot
- PMP|專案經理如何做好相關方管理?
- 自然語言處理中的語言模型預訓練方法自然語言處理模型
- 自然語言處理NLP快速入門自然語言處理
- 配置Hanlp自然語言處理進階HanLP自然語言處理
- 自然語言處理之jieba分詞自然語言處理Jieba分詞
- 人工智慧 (06) 自然語言處理人工智慧自然語言處理
- 自然語言處理與情緒智慧自然語言處理
- Pytorch系列:(六)自然語言處理NLPPyTorch自然語言處理
- 精通Python自然語言處理 2 :統計語言建模Python自然語言處理
- 用git管理你的專案吧(最全的乾貨)Git
- 2019年上半年收集到的人工智慧自然語言處理方向乾貨文章人工智慧自然語言處理
- springboot專案中的異常處理Spring Boot
- 探索自然語言處理:語言模型的發展與應用自然語言處理模型
- 中國語文(自然語言處理)作業自然語言處理
- 使用zig語言製作簡單部落格網站(四)專案檔案整理網站
- 有趣的自然語言處理資源集錦自然語言處理
- hanlp自然語言處理包的基本使用--pythonHanLP自然語言處理Python
- 12 種自然語言處理的開源工具自然語言處理開源工具